Special Issue:
SPECIAL TOPIC — Smart design of materials and design of smart materials
|
SPECIAL TOPIC—Smart design of materials and design of smart materials |
Prev
Next
|
|
|
Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles |
Xiaoyi Ma(马宵怡)1, Yufeng Luo(罗宇峰)1, Mengke Li(李梦可)1, Wenyan Jiao(焦文艳)1, Hongmei Yuan(袁红梅)1, Huijun Liu(刘惠军)1,†, and Ying Fang(方颖)2,‡ |
1 Key Laboratory of Artificial Micro-and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China; 2 School of Computer Science, Wuhan University, Wuhan 430072, China |
|
|
Abstract The novel electronic properties of bilayer graphene can be fine-tuned via twisting, which may induce flat bands around the Fermi level with nontrivial topology. In general, the band structure of such twisted bilayer graphene (TBG) can be theoretically obtained by using first-principles calculations, tight-binding method, or continuum model, which are either computationally demanding or parameters dependent. In this work, by using the sure independence screening sparsifying operator method, we propose a physically interpretable three-dimensional (3D) descriptor which can be utilized to readily obtain the Γ-point gap of TBG at arbitrary twist angles and different interlayer spacings. The strong predictive power of the descriptor is demonstrated by a high Pearson coefficient of 99% for both the training and testing data. To go further, we adopt the neural network algorithm to accurately probe the flat bands of TBG at various twist angles, which can accelerate the study of strong correlation physics associated with such a fundamental characteristic, especially for those systems with a larger number of atoms in the unit cell.
|
Received: 23 November 2022
Revised: 24 December 2022
Accepted manuscript online: 13 January 2023
|
PACS:
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62074114). The numerical calculations in this work have been done on the platform in the Supercomputing Center of Wuhan University. |
Corresponding Authors:
Huijun Liu, Ying Fang
E-mail: phlhj@whu.edu.cn;fangying@whu.edu.cn
|
Cite this article:
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖) Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles 2023 Chin. Phys. B 32 057306
|
[1] Lopes dos Santos J M B, Peres N M R and Castro Neto A H 2007 Phys. Rev. Lett. 99 256802 [2] Fang W, Hsu A L, Song Y and Kong J 2015 Nanoscale 7 20335 [3] Li G, Luican A, Dos Santos J, Neto A, Reina A, Kong J and Andrei E 2009 Nat. Phys. 6 109 [4] Sanchez-Yamagishi J D, Taychatanapat T, Watanabe K, Taniguchi T, Yacoby A and Jarillo-Herrero P 2012 Phys. Rev. Lett. 108 76601 [5] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [6] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [7] Po H C, Zou L, Vishwanath A and Senthil T 2018 Phys. Rev. X 8 031089 [8] Ahn J, Park S and Yang B J 2019 Phys. Rev. X 9 021013 [9] Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A 2020 Science 367 900 [10] Rozhkov A V, Sboychakov A O, Rakhmanov A L and Nori F 2016 Phys. Rep. 648 1 [11] Goodwin Z A H, Corsetti F, Mostofifi A A and Lischner J 2019 Phys. Rev. B 100 235424 [12] Carr S, Fang S, Zhu Z Y and Kaxiras E 2019 Phys. Rev. Res. 1 013001 [13] Cantele G, Alfé D, Conte F, Cataudella V, Ninno D and Lucignano P 2020 Phys. Rev. Res. 2 043127 [14] Lin X Q, Zhu H T and Ni J 2020 Phys. Rev. B 101 155405 [15] Sunku S S, McLeod A S, Stauber T, Yoo H, Halbertal D, Ni G X, Sternbach A, Jiang B Y, Taniguchi T, Watanabe K, Kim P, Fogler M M and Basov D N 2020 Nano Lett. 20 2958 [16] Tritsaris G A, Carr S, Zhu Z, Xie Y, Torrisi S B, Tang J, Mattheakis M, Larson D T and Kaxiras E 2020 2D Mater. 7 035028 [17] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R 2019 Science 363 1059 [18] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J and Andrei E Y 2019 Nature 573 91 [19] Carr S, Fang S, Jarillo-Herrero P and Kaxiras E 2018 Phys. Rev. B 98 085144 [20] Goodwin Z A H, Corsetti F, Mostofi A A and Lischner J 2019 Phys. Rev. B 100 121106 [21] Yndurain F 2019 Phys. Rev. B 99 045423 [22] Lopez-Bezanilla A 2019 Phys. Rev. Mater. 3 054003 [23] Chen X, Liu S L, Fry J N and Cheng H P 2022 J. Phys.: Condens. Matter 34 385501 [24] Muniz A R and Maroudas D 2012 Phys. Rev. B 86 075404 [25] Lucignano P, Alfé D, Cataudella V, Ninno D and Cantele G 2019 Phys. Rev. B 99 195419 [26] Moon P and Koshino M 2012 Phys. Rev. B 85 195458 [27] Fujimoto M and Koshino M 2021 Phys. Rev. B 103 155410 [28] Kuang X H, Zhan Z and Yuan S J 2021 Phys. Rev. B 103 115431 [29] Tarnopolsky G, Kruchkov A J and Vishwanath A 2019 Phys. Rev. Lett. 122 106405 [30] Liu J P, Liu J W and Dai X 2019 Phys. Rev. B 99 155415 [31] Wen L, Li Z Q and He Y 2021 Chin. Phys. B 30 017303 [32] Pilania G, Mannodi-Kanakkithodi A, Uberuaga B P, Ramprasad R, Gubernatis J E and Lookman T 2016 Sci. Rep. 6 19375 [33] Zhuo Y, Tehrani A M and Brgoch J 2018 J. Phys. Chem. Lett. 9 1668 [34] Rajan A C, Mishra A, Satsangi S, Vaish R, Mizuseki H, Lee K R and Singh A K 2018 Chem. Mater. 30 4031 [35] Huang Y, Yu C Y, Chen W G, Liu Y H, Li C, Niu C Y, Wang F and Jia Y 2019 J. Mater. Chem. C 7 3238 [36] Marchenko E I, Fateev S A, Petrov A A, Korolev V V, Mitrofanov A, Petrov A V, Goodilin E A and Tarasov A B 2020 Chem. Mater. 32 7383 [37] Ma X Y, Lyu H Y, Hao K R, Zhu Z G, Yan Q B and Su G 2021 Nanoscale 13 14694 [38] Sa B S, Hu R, Zheng Z, Xiong R, Zhang Y G, Wen C L, Zhou J and Sun Z M 2022 Chem. Mater. 34 6687 [39] Jin H, Tan X X, Wang T, Yu Y J and Wei Y D 2022 J. Phys. Chem. Lett. 13 7228 [40] Hu R, Lei W, Yuan H M, Han S H and Liu H J 2022 Nanomaterials 12 2301 [41] Ghiringhelli L M, Vybiral J, Levchenko S V, Draxl C and Scheffler M 2015 Phys. Rev. Lett. 114 105503 [42] Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M and Ghiringhelli L M 2018 Phys. Rev. Mater. 2 083802 [43] Anthony M and Bartlett P L 1999 Neural Network Learning: Theoretical Foundations (Cambridge: Cambridge University) [44] Morell E S, Correa J D, Vargas P, Pacheco M and Barticevic Z 2010 Phys. Rev. B 82 121407 [45] Trambly de Laissardiére G, Mayou D and Magaud L 2010 Nano Lett. 10 804 [46] Moon P and Koshino M 2013 Phys. Rev. B 87 205404 [47] Weckbecker D, Shallcross S, Fleischmann M, Ray N, Sharma S and Pankratov O 2016 Phys. Rev. B 93 035452 [48] Gonzalez-Arraga L A, Lado J L, Guinea F and Jose P S 2017 Phys. Rev. Lett. 119 107201 [49] Su Y and Lin S Z 2018 Phys. Rev. B 98 195101 [50] Qiao J B, Yin L J and He L 2018 Phys. Rev. B 98 235402 [51] Kang J and Vafek O 2018 Phys. Rev. X 8 031088 [52] Angeli M, Mandelli D, Valli A, Amaricci A, Capone M, Tosatti E and Fabrizio M 2018 Phys. Rev. B 98 235137 [53] Carr S, Fang S, Po H C, Vishwanath A and Kaxiras E 2019 Phys. Rev. Research 1 033072 [54] Codecido E, Wang Q Y, Koester R, Che S, Tian H D, Lv R, Tran S, Watanabe K, Taniguchi T, Zhang F, Bockrath M and Lau C N 2019 Sci. Adv. 5 eaaw9770 [55] Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E and Kim P 2019 Nat. Mater. 18 448 [56] Koshino M and Nam N N T 2020 Phys. Rev. B 101 195425 [57] Chen X, Wu T M and Zhuang W 2020 Nanoscale 12 8793 [58] Wang J, Boa W, Ding Y, Wang X and Mu X 2020 Mater. Today Phys. 14 100238 [59] Su Y and Lin S Z 2020 Phys. Rev. Lett. 125 226401 [60] Deng B C, Ma C, Wang Q Y, Yuan S F, Watanabe K, Taniguchi T, Zhang F and Xia F N 2020 Nat. Photonics 14 549 [61] Ma C, Wang Q Y, Mills S, Chen X L, Deng B C, Yuan S F, Li C, Watanabe K, Taniguchi T, Du X, Zhang F and Xia F N 2020 Nano Lett. 20 6076 [62] Tsim B, Nam N N T and Koshino M 2020 Phys. Rev. B 101 125409 [63] Beule C D, Silvestrov P G, Liu M H and Recher P 2020 Phys. Rev. Res. 2 043151 [64] Nguyen V H, Paszko D, Lamparski M, Troeye B V, Meunier V and Charlier J C 2021 2D Mater. 8 035046 [65] Yang F W and Song B 2021 Phys. Rev. B 103 235415 [66] Song Z D, Lian B, Regnault N and Bernevig B A 2021 Phys. Rev. B 103 205412 [67] Ge L B, Ni K, Wu X J, Fu Z P, Lu Y L and Zhu Y W 2021 Nanoscale 13 9264 [68] Wang W X, Jiang H, Zhang Y, Li S Y, Liu H W, Li X Q, Wu X S and He L 2017 Phys. Rev. B 96 115434 [69] Nam N N T and Koshino M 2017 Phys. Rev. B 96 075311 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|