Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 057306    DOI: 10.1088/1674-1056/acb2c3
Special Issue: SPECIAL TOPIC — Smart design of materials and design of smart materials
SPECIAL TOPIC—Smart design of materials and design of smart materials Prev   Next  

Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles

Xiaoyi Ma(马宵怡)1, Yufeng Luo(罗宇峰)1, Mengke Li(李梦可)1, Wenyan Jiao(焦文艳)1, Hongmei Yuan(袁红梅)1, Huijun Liu(刘惠军)1,†, and Ying Fang(方颖)2,‡
1 Key Laboratory of Artificial Micro-and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China;
2 School of Computer Science, Wuhan University, Wuhan 430072, China
Abstract  The novel electronic properties of bilayer graphene can be fine-tuned via twisting, which may induce flat bands around the Fermi level with nontrivial topology. In general, the band structure of such twisted bilayer graphene (TBG) can be theoretically obtained by using first-principles calculations, tight-binding method, or continuum model, which are either computationally demanding or parameters dependent. In this work, by using the sure independence screening sparsifying operator method, we propose a physically interpretable three-dimensional (3D) descriptor which can be utilized to readily obtain the Γ-point gap of TBG at arbitrary twist angles and different interlayer spacings. The strong predictive power of the descriptor is demonstrated by a high Pearson coefficient of 99% for both the training and testing data. To go further, we adopt the neural network algorithm to accurately probe the flat bands of TBG at various twist angles, which can accelerate the study of strong correlation physics associated with such a fundamental characteristic, especially for those systems with a larger number of atoms in the unit cell.
Keywords:  twisted bilayer graphene      band gap      flat bands      machine learning  
Received:  23 November 2022      Revised:  24 December 2022      Accepted manuscript online:  13 January 2023
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  71.15.-m (Methods of electronic structure calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62074114). The numerical calculations in this work have been done on the platform in the Supercomputing Center of Wuhan University.
Corresponding Authors:  Huijun Liu, Ying Fang     E-mail:  phlhj@whu.edu.cn;fangying@whu.edu.cn

Cite this article: 

Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖) Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles 2023 Chin. Phys. B 32 057306

[1] Lopes dos Santos J M B, Peres N M R and Castro Neto A H 2007 Phys. Rev. Lett. 99 256802
[2] Fang W, Hsu A L, Song Y and Kong J 2015 Nanoscale 7 20335
[3] Li G, Luican A, Dos Santos J, Neto A, Reina A, Kong J and Andrei E 2009 Nat. Phys. 6 109
[4] Sanchez-Yamagishi J D, Taychatanapat T, Watanabe K, Taniguchi T, Yacoby A and Jarillo-Herrero P 2012 Phys. Rev. Lett. 108 76601
[5] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[6] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[7] Po H C, Zou L, Vishwanath A and Senthil T 2018 Phys. Rev. X 8 031089
[8] Ahn J, Park S and Yang B J 2019 Phys. Rev. X 9 021013
[9] Serlin M, Tschirhart C, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A 2020 Science 367 900
[10] Rozhkov A V, Sboychakov A O, Rakhmanov A L and Nori F 2016 Phys. Rep. 648 1
[11] Goodwin Z A H, Corsetti F, Mostofifi A A and Lischner J 2019 Phys. Rev. B 100 235424
[12] Carr S, Fang S, Zhu Z Y and Kaxiras E 2019 Phys. Rev. Res. 1 013001
[13] Cantele G, Alfé D, Conte F, Cataudella V, Ninno D and Lucignano P 2020 Phys. Rev. Res. 2 043127
[14] Lin X Q, Zhu H T and Ni J 2020 Phys. Rev. B 101 155405
[15] Sunku S S, McLeod A S, Stauber T, Yoo H, Halbertal D, Ni G X, Sternbach A, Jiang B Y, Taniguchi T, Watanabe K, Kim P, Fogler M M and Basov D N 2020 Nano Lett. 20 2958
[16] Tritsaris G A, Carr S, Zhu Z, Xie Y, Torrisi S B, Tang J, Mattheakis M, Larson D T and Kaxiras E 2020 2D Mater. 7 035028
[17] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R 2019 Science 363 1059
[18] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J and Andrei E Y 2019 Nature 573 91
[19] Carr S, Fang S, Jarillo-Herrero P and Kaxiras E 2018 Phys. Rev. B 98 085144
[20] Goodwin Z A H, Corsetti F, Mostofi A A and Lischner J 2019 Phys. Rev. B 100 121106
[21] Yndurain F 2019 Phys. Rev. B 99 045423
[22] Lopez-Bezanilla A 2019 Phys. Rev. Mater. 3 054003
[23] Chen X, Liu S L, Fry J N and Cheng H P 2022 J. Phys.: Condens. Matter 34 385501
[24] Muniz A R and Maroudas D 2012 Phys. Rev. B 86 075404
[25] Lucignano P, Alfé D, Cataudella V, Ninno D and Cantele G 2019 Phys. Rev. B 99 195419
[26] Moon P and Koshino M 2012 Phys. Rev. B 85 195458
[27] Fujimoto M and Koshino M 2021 Phys. Rev. B 103 155410
[28] Kuang X H, Zhan Z and Yuan S J 2021 Phys. Rev. B 103 115431
[29] Tarnopolsky G, Kruchkov A J and Vishwanath A 2019 Phys. Rev. Lett. 122 106405
[30] Liu J P, Liu J W and Dai X 2019 Phys. Rev. B 99 155415
[31] Wen L, Li Z Q and He Y 2021 Chin. Phys. B 30 017303
[32] Pilania G, Mannodi-Kanakkithodi A, Uberuaga B P, Ramprasad R, Gubernatis J E and Lookman T 2016 Sci. Rep. 6 19375
[33] Zhuo Y, Tehrani A M and Brgoch J 2018 J. Phys. Chem. Lett. 9 1668
[34] Rajan A C, Mishra A, Satsangi S, Vaish R, Mizuseki H, Lee K R and Singh A K 2018 Chem. Mater. 30 4031
[35] Huang Y, Yu C Y, Chen W G, Liu Y H, Li C, Niu C Y, Wang F and Jia Y 2019 J. Mater. Chem. C 7 3238
[36] Marchenko E I, Fateev S A, Petrov A A, Korolev V V, Mitrofanov A, Petrov A V, Goodilin E A and Tarasov A B 2020 Chem. Mater. 32 7383
[37] Ma X Y, Lyu H Y, Hao K R, Zhu Z G, Yan Q B and Su G 2021 Nanoscale 13 14694
[38] Sa B S, Hu R, Zheng Z, Xiong R, Zhang Y G, Wen C L, Zhou J and Sun Z M 2022 Chem. Mater. 34 6687
[39] Jin H, Tan X X, Wang T, Yu Y J and Wei Y D 2022 J. Phys. Chem. Lett. 13 7228
[40] Hu R, Lei W, Yuan H M, Han S H and Liu H J 2022 Nanomaterials 12 2301
[41] Ghiringhelli L M, Vybiral J, Levchenko S V, Draxl C and Scheffler M 2015 Phys. Rev. Lett. 114 105503
[42] Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M and Ghiringhelli L M 2018 Phys. Rev. Mater. 2 083802
[43] Anthony M and Bartlett P L 1999 Neural Network Learning: Theoretical Foundations (Cambridge: Cambridge University)
[44] Morell E S, Correa J D, Vargas P, Pacheco M and Barticevic Z 2010 Phys. Rev. B 82 121407
[45] Trambly de Laissardiére G, Mayou D and Magaud L 2010 Nano Lett. 10 804
[46] Moon P and Koshino M 2013 Phys. Rev. B 87 205404
[47] Weckbecker D, Shallcross S, Fleischmann M, Ray N, Sharma S and Pankratov O 2016 Phys. Rev. B 93 035452
[48] Gonzalez-Arraga L A, Lado J L, Guinea F and Jose P S 2017 Phys. Rev. Lett. 119 107201
[49] Su Y and Lin S Z 2018 Phys. Rev. B 98 195101
[50] Qiao J B, Yin L J and He L 2018 Phys. Rev. B 98 235402
[51] Kang J and Vafek O 2018 Phys. Rev. X 8 031088
[52] Angeli M, Mandelli D, Valli A, Amaricci A, Capone M, Tosatti E and Fabrizio M 2018 Phys. Rev. B 98 235137
[53] Carr S, Fang S, Po H C, Vishwanath A and Kaxiras E 2019 Phys. Rev. Research 1 033072
[54] Codecido E, Wang Q Y, Koester R, Che S, Tian H D, Lv R, Tran S, Watanabe K, Taniguchi T, Zhang F, Bockrath M and Lau C N 2019 Sci. Adv. 5 eaaw9770
[55] Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E and Kim P 2019 Nat. Mater. 18 448
[56] Koshino M and Nam N N T 2020 Phys. Rev. B 101 195425
[57] Chen X, Wu T M and Zhuang W 2020 Nanoscale 12 8793
[58] Wang J, Boa W, Ding Y, Wang X and Mu X 2020 Mater. Today Phys. 14 100238
[59] Su Y and Lin S Z 2020 Phys. Rev. Lett. 125 226401
[60] Deng B C, Ma C, Wang Q Y, Yuan S F, Watanabe K, Taniguchi T, Zhang F and Xia F N 2020 Nat. Photonics 14 549
[61] Ma C, Wang Q Y, Mills S, Chen X L, Deng B C, Yuan S F, Li C, Watanabe K, Taniguchi T, Du X, Zhang F and Xia F N 2020 Nano Lett. 20 6076
[62] Tsim B, Nam N N T and Koshino M 2020 Phys. Rev. B 101 125409
[63] Beule C D, Silvestrov P G, Liu M H and Recher P 2020 Phys. Rev. Res. 2 043151
[64] Nguyen V H, Paszko D, Lamparski M, Troeye B V, Meunier V and Charlier J C 2021 2D Mater. 8 035046
[65] Yang F W and Song B 2021 Phys. Rev. B 103 235415
[66] Song Z D, Lian B, Regnault N and Bernevig B A 2021 Phys. Rev. B 103 205412
[67] Ge L B, Ni K, Wu X J, Fu Z P, Lu Y L and Zhu Y W 2021 Nanoscale 13 9264
[68] Wang W X, Jiang H, Zhang Y, Li S Y, Liu H W, Li X Q, Wu X S and He L 2017 Phys. Rev. B 96 115434
[69] Nam N N T and Koshino M 2017 Phys. Rev. B 96 075311
[1] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[2] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[3] Reconstruction and stability of Fe3O4(001) surface: An investigation based on particle swarm optimization and machine learning
Hongsheng Liu(柳洪盛), Yuanyuan Zhao(赵圆圆), Shi Qiu(邱实), Jijun Zhao(赵纪军), and Junfeng Gao(高峻峰). Chin. Phys. B, 2023, 32(5): 056802.
[4] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[5] Size effect on light propagation modulation near band edges in one-dimensional periodic structures
Yang Tang(唐洋), Jiajun Wang(王佳俊), Xingqi Zhao(赵星棋), Tongyu Li(李同宇), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(5): 054201.
[6] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), and Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[7] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[8] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[12] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[13] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[14] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[15] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
No Suggested Reading articles found!