CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Valley-dependent transport in strain engineering graphene heterojunctions |
Fei Wan(万飞)1, X R Wang(王新茹)1, L H Liao(廖烈鸿)1, J Y Zhang(张嘉颜)1, M N Chen(陈梦南)1, G H Zhou(周光辉)2, Z B Siu(萧卓彬)3, Mansoor B. A. Jalil3, and Yuan Li(李源)1,† |
1 Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China; 2 Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation(Ministry of Education), Hunan Normal University, Changsha 410081, China; 3 Computational Nanoelectronics and Nano-device Laboratory, Electrical and Computer Engineering Department, National University of Singapore, Singapore 117576, Singapore |
|
|
Abstract We study the effect of strain on band structure and valley-dependent transport properties of graphene heterojunctions. It is found that valley-dependent separation of electrons can be achieved by utilizing strain and on-site energies. In the presence of strain, the values of transmission can be effectively adjusted by changing the strengths of the strain, while the transport angle basically keeps unchanged. When an extra on-site energy is simultaneously applied to the central scattering region, not only are the electrons of valleys K and K' separated into two distinct transmission lobes in opposite transverse directions, but the transport angles of two valleys can be significantly changed. Therefore, one can realize an effective modulation of valley-dependent transport by changing the strength and stretch angle of the strain and on-site energies, which can be exploited for graphene-based valleytronics devices.
|
Received: 27 October 2021
Revised: 28 January 2022
Accepted manuscript online: 17 February 2022
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by National Natural Science Foundation of China (Grant No. 11574067). |
Corresponding Authors:
Yuan Li
E-mail: liyuan@hdu.edu.cn
|
Cite this article:
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源) Valley-dependent transport in strain engineering graphene heterojunctions 2022 Chin. Phys. B 31 077302
|
[1] Bolotin K I, Sikes K J, Jiang Z, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351 [2] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [4] Geim A K and Novoselov K S 2007 Phys. Today 60 35 [5] Wallace P R 1947 Phys. Rev. 71 622 [6] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172 [7] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [8] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 [9] Ezawa M 2012 Phys. Rev. Lett. 109 055502 [10] Li Y, Zhu H B, Wang G Q, Peng Y Z, Xu J R, Qian Z H, Bai R, Zhou G H, Yesilyurt C, Siu Z B and Jalil M B A 2018 Phys. Rev. B 97 085427 [11] Ang Y S, Yang S A, Zhang C, Ma Z S and Ang L K 2017 Phys. Rev. B 96 245410 [12] Parameswaran S A, Grover T, Abanin D A, Pesin D A and Vishwanath A 2014 Phys. Rev. X 4 031035 [13] Yesilyurt C, Siu Z B, Tan S G, Liang G, Yang S A and Jalil M B A 2019 Sci. Rep. 9 4480 [14] Shan W Y, Lu H Z and Xiao D 2013 Phys. Rev. B 88 125301 [15] Zhang Q Y, Yang A S Y, Mi W B, Cheng Y C and Schwingenschlogl U 2016 Adv. Mater 28 959 [16] Seon-Myeong C, Seung-Hoon J and Young-Woo S 2010 Phys. Rev. B 81 081407 [17] Wu B L, Wei Q, Zhang Z Q and Jiang H 2021 Chin. Phys. B 30 030504 [18] Pereira V M, Castro Neto A H and Peres N M R 2009 Phys. Rev. B 80 045401 [19] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385 [20] Suzuura H and Ando T 2002 Phys. Rev. B 65 235412 [21] Manes J L 2007 Phys. Rev. B 76 045430 [22] Vozmediano M A H, Katsnelson M I and Guinea F 2010 Phys. Rep. 496 109 [23] Levy N, Burke S A, Meaker K L, anlasigui M, Zettl A, Guinea F, Castro Neto A H and Crommie M F 2010 Science 329 544 [24] Abedpour N, Asgari R and Guinea F 2011 Phys. Rev. B 84 115437 [25] Song J T, Liu H W, Jiang H, Sun Q F and Xie X C 2012 Phys. Rev. B 86 085437 [26] Bahamon D A, Pereira A L C and Schulz P A 2011 Phys. Rev. B 83 155436 [27] Blakslee O L, Proctor D G, Seldin E J, Spence G B and Weng T 1970 J. Appl. Phys. 41 3373 [28] Slater J C and Koster G F 1954 Phys. Rev. 94 1498 [29] Ando T 1991 Phys. Rev. B 44 8017 [30] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge:Cambridge University Press) [31] Khomyakov P A, Brocks G, Karpan V, Zwierzycki M and Kelly P J 2005 Phys. Rev. B 72 035450 [32] Cheng S, Liu H, Jiang H, Sun Q F and Xie X C 2018 Phys. Rev. Lett. 121 156801 [33] Qin M S, Zhu P F, Ye X G, Xu W Z, Song Z H, Liang J, Liu K H and Liao Z M 2021 Chin. Phys. Lett. 38 017301 [34] Li Y, Wan Q, Peng Y Z, Wang G Q, Qian Z H, Zhou G H and Jalil M B A 2015 Sci. Rep. 5 18458 [35] De Martino A, Dell'Anna L and Egger R 2007 Phys. Rev. Lett. 98 066802 [36] Masir M R, Vasilopoulos P and Peeters F M 2008 Appl. Phys. Lett. 93 242103 [37] Li Y, Jalil M B A and Zhou G H 2014 Appl. Phys. Lett. 105 193108 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|