Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 077302    DOI: 10.1088/1674-1056/ac5613
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Valley-dependent transport in strain engineering graphene heterojunctions

Fei Wan(万飞)1, X R Wang(王新茹)1, L H Liao(廖烈鸿)1, J Y Zhang(张嘉颜)1, M N Chen(陈梦南)1, G H Zhou(周光辉)2, Z B Siu(萧卓彬)3, Mansoor B. A. Jalil3, and Yuan Li(李源)1,†
1 Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China;
2 Department of Physics and Key Laboratory for Low-Dimensional Quantum Structures and Manipulation(Ministry of Education), Hunan Normal University, Changsha 410081, China;
3 Computational Nanoelectronics and Nano-device Laboratory, Electrical and Computer Engineering Department, National University of Singapore, Singapore 117576, Singapore
Abstract  We study the effect of strain on band structure and valley-dependent transport properties of graphene heterojunctions. It is found that valley-dependent separation of electrons can be achieved by utilizing strain and on-site energies. In the presence of strain, the values of transmission can be effectively adjusted by changing the strengths of the strain, while the transport angle basically keeps unchanged. When an extra on-site energy is simultaneously applied to the central scattering region, not only are the electrons of valleys K and K' separated into two distinct transmission lobes in opposite transverse directions, but the transport angles of two valleys can be significantly changed. Therefore, one can realize an effective modulation of valley-dependent transport by changing the strength and stretch angle of the strain and on-site energies, which can be exploited for graphene-based valleytronics devices.
Keywords:  strain engineering      valley-dependent separation      graphene      on-site energy  
Received:  27 October 2021      Revised:  28 January 2022      Accepted manuscript online:  17 February 2022
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by National Natural Science Foundation of China (Grant No. 11574067).
Corresponding Authors:  Yuan Li     E-mail:  liyuan@hdu.edu.cn

Cite this article: 

Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源) Valley-dependent transport in strain engineering graphene heterojunctions 2022 Chin. Phys. B 31 077302

[1] Bolotin K I, Sikes K J, Jiang Z, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[2] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[4] Geim A K and Novoselov K S 2007 Phys. Today 60 35
[5] Wallace P R 1947 Phys. Rev. 71 622
[6] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[7] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[8] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[9] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[10] Li Y, Zhu H B, Wang G Q, Peng Y Z, Xu J R, Qian Z H, Bai R, Zhou G H, Yesilyurt C, Siu Z B and Jalil M B A 2018 Phys. Rev. B 97 085427
[11] Ang Y S, Yang S A, Zhang C, Ma Z S and Ang L K 2017 Phys. Rev. B 96 245410
[12] Parameswaran S A, Grover T, Abanin D A, Pesin D A and Vishwanath A 2014 Phys. Rev. X 4 031035
[13] Yesilyurt C, Siu Z B, Tan S G, Liang G, Yang S A and Jalil M B A 2019 Sci. Rep. 9 4480
[14] Shan W Y, Lu H Z and Xiao D 2013 Phys. Rev. B 88 125301
[15] Zhang Q Y, Yang A S Y, Mi W B, Cheng Y C and Schwingenschlogl U 2016 Adv. Mater 28 959
[16] Seon-Myeong C, Seung-Hoon J and Young-Woo S 2010 Phys. Rev. B 81 081407
[17] Wu B L, Wei Q, Zhang Z Q and Jiang H 2021 Chin. Phys. B 30 030504
[18] Pereira V M, Castro Neto A H and Peres N M R 2009 Phys. Rev. B 80 045401
[19] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[20] Suzuura H and Ando T 2002 Phys. Rev. B 65 235412
[21] Manes J L 2007 Phys. Rev. B 76 045430
[22] Vozmediano M A H, Katsnelson M I and Guinea F 2010 Phys. Rep. 496 109
[23] Levy N, Burke S A, Meaker K L, anlasigui M, Zettl A, Guinea F, Castro Neto A H and Crommie M F 2010 Science 329 544
[24] Abedpour N, Asgari R and Guinea F 2011 Phys. Rev. B 84 115437
[25] Song J T, Liu H W, Jiang H, Sun Q F and Xie X C 2012 Phys. Rev. B 86 085437
[26] Bahamon D A, Pereira A L C and Schulz P A 2011 Phys. Rev. B 83 155436
[27] Blakslee O L, Proctor D G, Seldin E J, Spence G B and Weng T 1970 J. Appl. Phys. 41 3373
[28] Slater J C and Koster G F 1954 Phys. Rev. 94 1498
[29] Ando T 1991 Phys. Rev. B 44 8017
[30] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge:Cambridge University Press)
[31] Khomyakov P A, Brocks G, Karpan V, Zwierzycki M and Kelly P J 2005 Phys. Rev. B 72 035450
[32] Cheng S, Liu H, Jiang H, Sun Q F and Xie X C 2018 Phys. Rev. Lett. 121 156801
[33] Qin M S, Zhu P F, Ye X G, Xu W Z, Song Z H, Liang J, Liu K H and Liao Z M 2021 Chin. Phys. Lett. 38 017301
[34] Li Y, Wan Q, Peng Y Z, Wang G Q, Qian Z H, Zhou G H and Jalil M B A 2015 Sci. Rep. 5 18458
[35] De Martino A, Dell'Anna L and Egger R 2007 Phys. Rev. Lett. 98 066802
[36] Masir M R, Vasilopoulos P and Peeters F M 2008 Appl. Phys. Lett. 93 242103
[37] Li Y, Jalil M B A and Zhou G H 2014 Appl. Phys. Lett. 105 193108
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[6] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[11] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[12] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!