Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 087804    DOI: 10.1088/1674-1056/ac6744

Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states

Zeng-Ping Su(苏增平)1,2, Tong-Tong Wei(魏彤彤)1,2, and Yue-Ke Wang(王跃科)1,2,†
1 Optical Information Science and Technology Department, Jiangnan University, Wuxi 214122, China;
2 Optoelectronic Engineering and Technology Research Center, Jiangnan University, Wuxi 214122, China
Abstract  The dual-channel nearly perfect absorption is realized by the coupled modes of topological interface states (TIS) in the near-infrared range. An all-dielectric layered heterostructure composed of photonic crystals (PhC)/graphene/PhC/graphene/PhC on GaAs substrate is proposed to excite the TIS at the interface of adjacent PhC with opposite topological properties. Based on finite element method (FEM) and transfer matrix method (TMM), the dual-channel absorption can be modulated by the periodic number of middle PhC, Fermi level of graphene, and angle of incident light (TE and TM polarizations). Especially, by fine-tuning the Fermi level of graphene around 0.4 eV, the absorption of both channels can be switched rapidly and synchronously. This design is hopefully integrated into silicon-based chips to control light.
Keywords:  one-dimensional photonic crystals      graphene      topological interface states  
Received:  06 October 2021      Revised:  27 March 2022      Accepted manuscript online:  14 April 2022
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.70.Qs (Photonic bandgap materials)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.67.Wj (Optical properties of graphene)  
Fund: This project was supported by Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX20 1929).
Corresponding Authors:  Yue-Ke Wang     E-mail:

Cite this article: 

Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科) Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states 2022 Chin. Phys. B 31 087804

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] El-Naggar S A 2015 Opt. Quant. Electron. 47 1627
[4] Joannopoulos J, Johnson S, Winn J and Meade R 2008 Photonic Crystals:Molding the Flow of Light, 2nd edn. (Princeton Univ.) p. 56
[5] Moghimi M, Mirzakuchaki S, Granpayeh N, Nozhat N and Darvish G 2012 Can. J. Phys. 90 175
[6] Fan Y, Wei Z, Li H, Chen H and Soukoulis C M 2013 Phys. Rev. B 88 241403
[7] Poshakinskiy A, Poddubny A, Pilozzi L and Ivchenko E 2014 Phys. Rev. Lett. 112 107403
[8] Polini M, Guinea F, Lewenstein M, Manoharan H C and Pellegrini V 2013 Nat. Nanotechnol. 8 625
[9] Lu L, Joannopoulos J D and Soljačić 2014 Nat. Photonics 8 821
[10] Li C, Hu X, Gao W, Ao Y, Chu S, Yang H and Gong Q 2018 Adv. Opt. Mater. 6 1701071
[11] Gao W, Hu X, Li C, Yang J, Chai Z, Xie J and Gong Q 2018 Opt. Express 26 8634
[12] Liang Y, Xiang Y and Dai X 2020 Opt. Express 28 24560
[13] Guo J, Wang H, Dai X, Xiang Y and Tang D 2019 Opt. Express 27 32746
[14] Liu C H, Chang Y C, Norris T B and Zhong Z 2014 Nat. Nanotechnol. 9 273
[15] Falkovsky L 2008 J. Phys.:Conf. Ser. 129 012004
[16] Zhao B, Zhao J and Zhang Z 2014 Appl. Phys. Lett. 105 031905
[17] Nikitin A Y, Guinea F, Garcia-Vidal F J and Martin-Moreno L 2012 Phys. Rev. B 85 081405
[18] Thongrattanasiri S, Koppens F H and De Abajo F J G 2012 Phys. Rev. Lett. 108 047401
[19] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K 2008 Science 320 1308
[20] Zhu X, Shi L, Schmidt M S, Boisen A, Hansen O, Zi J, Xiao S and Mortensen N A 2013 Nano Lett. 13 4690
[21] Lu H, Gan X, Jia B, Mao D and Zhao J 2016 Opt. Lett. 41 4743
[22] Wang X, Jiang X, You Q, Guo J, Dai X and Xiang Y 2017 Photon. Res. 5 536
[23] Qing Y M, Ma H F and Cui T J 2019 Opt. Lett. 44 3302
[24] Hu J, Liu W, Xie W, Zhang W, Yao E, Zhang Y and Zhan Q 2019 Opt. Lett. 44 5642
[25] Lu H, Li Y, Yue Z, Mao D and Zhao J 2020 Opt. Express 28 31893
[26] Wang X, Liang Y, Wu L, Guo J, Dai X and Xiang Y 2018 Opt. Lett. 43 4256
[27] Zhang K, Liu Y, Xia F, Li S and Kong W 2020 Opt. Lett. 45 3669
[28] Lin Y, Chou S and Hsueh W J 2020 Opt. Lett. 45 4369
[29] Li Y, Lu H, Zheng J, Li S, Xuan X and Zhao J J 2021 Chin. Opt. Lett. 19 103801
[30] Rakić A D and Majewski M L 1996 J. Appl. Phys. 80 5909
[31] Su Z, Wang Y, Luo X, Luo H, Zhang C, Li M, Sang T and Yang G 2018 Phys. Chem. Chem. Phys. 20 14357
[32] Xiao M, Zhang Z and Chan C T 2014 Phys. Rev. X 4 021017
[33] Gao W, Xiao M, Chen B, Pun E Y, Chan C T and Tam W Y 2017 Opt. Lett. 42 1500
[34] Dal Lago V, Atala M and Torres L F 2015 Phys. Rev. A 92 023624
[35] Schmidt C, Palatnik A, Sudzius M, Meister S and Leo K J 2021 Phys. Rev. B 103 085412
[36] Zhao Z, Li G, Su T, Yu F, Zhang Y, Wang W, Men W, Wang Z, Xuan L and Chen X 2019 Opt. Express 27 35088
[37] Guo B, Fang L, Zhang B and Gong J R 2011 Insciences J. 1 80
[38] Yeh D W and Wu C J 2009 Opt. Express 17 16666
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[10] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[11] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
No Suggested Reading articles found!