CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth |
Xiaoqing Luo(罗小青)1, Juan Luo(罗娟)1,2, Fangrong Hu(胡放荣)2, and Guangyuan Li(李光元)1,† |
1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; 2 Guilin University of Electronic Technology, Guilin 541004, China |
|
|
Abstract Metasurfaces incorporating graphene hold great promise for the active manipulation of terahertz waves. However, it remains challenging to design a broadband graphene-based terahertz metasurface with switchable functionality of half-wave plate (HWP) and quarter-wave plate (QWP). Here, we propose a graphene-metal hybrid metasurface for achieving broadband switchable HWP/QWP in the terahertz regime. Simulation results show that, by varying the Fermi energy of graphene from 0 eV to 1 eV, the function of the reflective metasurface can be switched from an HWP with polarization conversion ratio exceeding 97% over a wide band ranging from 0.7 THz to 1.3 THz, to a QWP with ellipticity above 0.92 over 0.78 THz-1.33 THz. The sharing bandwidth reaches up to 0.52 THz and the relative bandwidth is as high as 50%. We expect this broadband and dynamically switchable terahertz HWP/QWP will find applications in terahertz sensing, imaging, and telecommunications.
|
Received: 21 April 2022
Revised: 24 June 2022
Accepted manuscript online: 13 July 2022
|
PACS:
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
42.25.Ja
|
(Polarization)
|
|
78.67.Wj
|
(Optical properties of graphene)
|
|
Fund: Project supported by Shenzhen Research Foundation (Grant No. JCYJ20180507182444250). |
Corresponding Authors:
Guangyuan Li
E-mail: gy.li@siat.ac.cn
|
Cite this article:
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元) Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth 2023 Chin. Phys. B 32 027801
|
[1] Han Z and Bozhevolnyi S I 2013 Rep. Prog. Phys. 76 016402 [2] Hao J, Qiu M and Zhou L 2010 Front. Phys. China 5 291 [3] Chen H T, Taylor A J and Yu N 2016 Rep. Prog. Phys. 79 076401 [4] Zhao J, Cheng Y and Cheng Z 2018 IEEE Photonics J. 10 4600210 [5] Cheng Y, Fan J, Luo H and Chen F 2019 IEEE Access 8 7615 [6] Fan J and Cheng Y 2020 J. Phys. D: Appl. Phys. 53 025109 [7] Chen L, Liao D, Guo X, Zhao J, Zhu Y and Zhuang S 2019 Frontiers Inf. Technol. Electronic Eng. 20 591 [8] Cong L, Cao W, Tian Z, Gu J, Han J and Zhang W 2012 New J. Phys. 14 115013 [9] Chiang Y J and Yen T J 2013 New J. Phys. 14 115013 [10] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A and Chen H T 2013 Science 340 1304 [11] Cheng Y, Withayachumnankul W and Upadhyay A 2014 Appl. Phys. Lett. 105 181111 [12] Cong L, Xu N, Gu J, Singh R, Han J and Zhang W 2014 Laser Photonics Rev. 8 626 [13] Guo T and Argyropoulos C 2016 Opt. Lett. 41 5592 [14] Gao X, Yang W, Cao W, Chen M, Jiang Y, Yu X and Li H 2017 Opt. Express 25 23945 [15] Ma S, Wang X, Luo W, Sun S, Zhang Y, He Q and Zhou L 2017 Europhys. Lett. 117 37007 [16] Vasić B, Zografopoulos D C, Isić G, Beccherelli R and Gajić R 2017 Nanotechnology 28 124002 [17] Ji Y Y, Fan F, Wang X H and Chang S J 2018 Opt. Express 26 12852 [18] Wang D, Zhang L, Gu Y, Mehmood M, Gong Y, Srivastava A, Jian L, Venkatesan T, Qiu C W and Hong M 2015 Sci. Rep. 5 15020 [19] Wang D, Zhang L, Gong Y, Jian L, Venkatesan T, Qiu C W and Hong M 2016 IEEE Photonics J. 8 5500308 [20] Nakata Y, Fukawa K, Nakanishi T, Urade Y, Okimura K and Miyamaru F 2019 Phys. Rev. A 11 044008 [21] Zhao J X, Song J L, Zhou Y, Liu Y C and Zhou J H 2020 Chin. Phys. Lett. 37 64204 [22] Luo J, Shi X, Luo X, Hu F and Li G 2020 Opt. Express 28 30861 [23] Luo X, Hu F and Li G 2021 J. Phys. D: Appl. Phys. 54 505111 [24] Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan P M, Nordlander P, Halas N J and García de Abajo F J 2013 ACS Nano 7 2388 [25] Liu H, Liu Y and Zhu D B 2011 J. Mater. Chem. 21 3335 [26] Ryzhii V and Ryzhii M 2007 J. Appl. Phys. 101 083114 [27] Zhang Y, Feng Y, Zhu B, Zhao J and Jiang T 2015 Opt. Express 23 27230 [28] Tavakol M R, Rahmani B and Khavasi A 2019 IEEE Photon. Technol. Lett. 31 931 [29] Zhang W, Jiang J, Yuan J, Liang S, Qian J, Shu J and Jiang L 2018 OSA Continuum 1 124 [30] Guan S, Cheng J, Chen T and Chang S 2019 Opt. Lett. 44 5683 [31] Qi X, Zou J, Li C, Zhang J, Guo C C and Zhu Z 2020 Opt. Express 28 39430 [32] Zhang J, Zhang K, Cao A, Liu Y and Kong W 2020 Opt. Express 28 26102 [33] Tamagnone M, Capdevila S, Lombardo A, Wu J, Centeno A, Zurutuza A, Ionescu A, Ferrari A and Mosig J 2018 arXiv: 1806.02202 [34] Tao J, Yu X, Hu B, Dubrovkin A and Wang Q J 2014 Opt. Lett. 39 271 [35] Falkovsky L and Pershoguba S 2007 Phys. Rev. B 76 153410 [36] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H, Liang X, Zettl A and Shen Y 2011 Nat. Nanotechnol. 6 630 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|