INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light |
Guo-Bao Zhu(朱国宝)1, Hui-Min Yang(杨慧敏)1,†, and Jie Yang(杨杰)2 |
1 School of Physics and Electronic Engineering, Heze University, Heze 274015, China; 2 Shandong Graphenjoy Advanced Material Co. LTD, Dezhou 253072, China |
|
|
Abstract We study the effect of linearly polarized light on the band structure and longitudinal conductivity in ABC-stacked trilayer graphene. The linearly polarized light can induce a pair of additional points in ABC-stacked trilayer graphene, where conduct and valence bands touch. The locations of these points are determined by the amplitude of the light. Furthermore, the layer pseudospin polarization can be controlled by the light. When the Fermi energy locates at Dirac points, i.e., Ef=0, the longitudinal conductivity shows resonance phenomena when the light is present. Away from the Dirac points, the longitudinal conductivity is unchanged as varying Ef for weak light field at larger Fermi energy, and the amplitude of longitudinal conductivity can be controlled by tuning the light field amplitude. Moreover, the effect of linearly polarized light on resonance phenomena in k-cubic Rashba-Dresselhaus system under the irradiating of linearly polarized light is discussed.
|
Received: 23 February 2022
Revised: 18 May 2022
Accepted manuscript online: 23 May 2022
|
PACS:
|
81.05.uf
|
(Graphite)
|
|
73.61.Wp
|
(Fullerenes and related materials)
|
|
73.43.Cd
|
(Theory and modeling)
|
|
Fund: Project supported by the Shandong Provincial Natural Science Foundation (Grant No. ZR2021MA093). |
Corresponding Authors:
Hui-Min Yang
E-mail: yangyhm@163.com
|
Cite this article:
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰) Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light 2022 Chin. Phys. B 31 088102
|
[1] Koshino M and McCann E 2013 Phys. Rev. B 87 045420 [2] Guinea F, Castro Neto A H and Peres N M R 2006 Phys. Rev. B 73 245426 [3] Koshino M and McCann E 2009 Phys. Rev. B 79 125443 [4] Gelderen R, Lim L and Smith C M 2011 Phys. Rev. B 84 155446 [5] Min H and MacDonald A H 2008 Phys. Rev. B 77 155416 [6] Zhang F, Sahu B, Min H and MacDonald A H 2010 Phys. Rev. B 82 035409 [7] Zhang F, Jung J, Fiete G A, Niu Q and MacDonald A H 2011 Phys. Rev. Lett. 106 156801 [8] Li S, Liu C C and Yao Y 2018 New J. Phys. 20 033025 [9] Barlas Y, Côté R and Rondeau M 2012 Phys. Rev. Lett. 109 126804 [10] Lui C H, Li Z, Mak K F, Cappelluti E and Heinz T F 2011 Nat. Phys. 7 944 [11] Zou K, Zhang F, Clapp C, MacDonald A H and Zhu J 2013 Nano Lett. 13 369 [12] Chittari B L, Chen G, Zhang Y, Wang F and Jung J 2019 Phys. Rev. Lett. 122 016401 [13] Kumar A, Escoffier W, Poumirol J M, Faugeras C, Arovas D P, Fogler M M, Guinea F, Roche S, Goiran M and Raquet B 2011 Phys. Rev. Lett. 107 126806 [14] Côté R, Rondeau M, Gagnon A M and Barlas Y 2012 Phys. Rev. B 86 125422 [15] Rehman M U and Abid A A 2017 Chin. Phys. B 26 127304 [16] Zhang Y H and Senthil T 2019 Phys. Rev. B 99 205150 [17] Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Gordon D G, Zhang Y and Wang F 2020 Nature 579 56 [18] Oka T and Aoki H 2009 Phys. Rev. B 79 081406 [19] Shirley J H 1965 Phys. Rev. 138 979 [20] Sambe H 1973 Phys. Rev. A 7 2203 [21] Grifoni M and Hänggi P 1998 Phys. Rep. 304 229 [22] Kohler S, Lehmann J and Hänggi P 2005 Phys. Rep. 406 379 [23] McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G and Cavalleri A 2020 Nat. Phys. 16 38 [24] Iorsh I V, Dini K, Kibis O V and Shelykh I A 2017 Phys. Rev. B 96 155432 [25] Lago V D, E. Morell S and Torres L E F F 2017 Phys. Rev. B 96 235409 [26] Friedlan A and Dignam M M 2021 Phys. Rev. B 103 075414 [27] Vogl M, Rodriguez-Vega M and Fiete G A 2020 Phys. Rev. B 101 235411 [28] Vogl M, Rodriguez-Vega M and Fiete G A 2020 Phys. Rev. B 101 241408 [29] Assi I A, LeBlanc J P F, Rodriguez-Vega M, Bahlouli H and Vogl M 2021 Phys. Rev. B 104 195429 [30] Endo A, Hatano N, Nakamura H and Shirasaki R 2009 J. Phys.:Condens. Matter 21 345803 [31] Mak K F, McGill K L, Park J and McEuen P L 2014 Science 344 1489 [32] Broers L and Mathey L 2021 Commun. Phys. 4 248 [33] Tan C Y, Yan C X, Zhao Y H, Guo H and Chang H R 2021 Phys. Rev. B 103 125425 [34] Lindner N H, Rafael G and Galitski V 2011 Nat. Phys. 7 490 [35] Onoda S, Sugimoto N and Nagaosa N 2006 Phys. Rev. Lett. 97 126602 [36] Onoda S, Sugimoto N and Nagaosa N 2008 Phys. Rev. B 77 165103 [37] Kovalev A A, Tserkovnyak Y, Vyborny K and Sinova J 2009 Phys. Rev. B 79 195129 [38] Kovalev A A, Sinova J and Tserkovnyak Y 2010 Phys. Rev. Lett. 105 036601 [39] Smrčka L and Středa P 1977 J. Phys. C:Solid State Phys. 10 2153 [40] Alidoust M, Shen C and Žutić Igor 2021 Phys. Rev. B 103 L060503 [41] Chen T W and Hsu H C 2021 New J. Phys. 23 073017 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|