Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 087301    DOI: 10.1088/1674-1056/ac70c4
Special Issue: TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B Prev   Next  

Recent advances of defect-induced spin and valley polarized states in graphene

Yu Zhang(张钰)1,2,†, Liangguang Jia(贾亮广)1, Yaoyao Chen(陈瑶瑶)1, Lin He(何林)3, and Yeliang Wang(王业亮)1,‡
1 School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China;
2 Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China;
3 Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  Electrons in graphene have fourfold spin and valley degeneracies owing to the unique bipartite honeycomb lattice and an extremely weak spin-orbit coupling, which can support a series of broken symmetry states. Atomic-scale defects in graphene are expected to lift these degenerate degrees of freedom at the nanoscale, and hence, lead to rich quantum states, highlighting promising directions for spintronics and valleytronics. In this article, we mainly review the recent scanning tunneling microscopy (STM) advances on the spin and/or valley polarized states induced by an individual atomic-scale defect in graphene, including a single-carbon vacancy, a nitrogen-atom dopant, and a hydrogen-atom chemisorption. Lastly, we give a perspective in this field.
Keywords:  graphene      atomic-scale defect      broken symmetry      spin and valley polarized states  
Received:  12 April 2022      Revised:  16 May 2022      Accepted manuscript online:  18 May 2022
PACS:  73.22.Pr (Electronic structure of graphene)  
  61.48.Gh (Structure of graphene)  
  61.72.jd (Vacancies)  
Fund: This work is financial supported by the National Natural Science Foundation of China (Grant Nos. 92163206 and 61725107), the National Key Research and Development Program of China (Grant No. 2020YFA0308800), Beijing Natural Science Foundation (Grant No. Z190006), and China Postdoctoral Science Foundation (Grant No. 2021M700407).
Corresponding Authors:  Yu Zhang, Yeliang Wang     E-mail:;

Cite this article: 

Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮) Recent advances of defect-induced spin and valley polarized states in graphene 2022 Chin. Phys. B 31 087301

[1] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[2] Pesin D P and MacDonald A H 2012 Nat. Mater. 11 409
[3] Han W, Kawakami R K, Gmitra M and Fabian J 2014 Nat. Nanotechnol. 9 794
[4] Rhodes D, Chae S H, Ribeiro-Palau R and Hone J 2019 Nat. Mater. 18 541
[5] Li S, Liu M and Qiu X 2020 Small Methods 4 1900683
[6] Zhao L, He R, Rim K T, Schiros T, Kim K S, Zhou H, Gutiérrez C, Chockalingam S P, Arguello C J, Pálová L, Nordlund D, Hybertsen M S, Reichman D R, Heinz T F, Kim P, Pinczuk A, Flynn G W and Pasupathy A N 2011 Science 333 999
[7] Balakrishnan J, Koon G K, Jaiswal M, Castro Neto A H and Özyilmaz B 2013 Nat. Phys. 9 284
[8] Zhang Y, Guo Q Q, Li S Y and He L 2020 Phys. Rev. B 101 155424
[9] González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F and Brihuega I 2016 Science 352 437
[10] Zhang Y, Li S Y, Huang H, Li W T, Qiao J B, Wang W X, Yin L J, Bai K K, Duan W and He L 2016 Phys. Rev. Lett. 117 166801
[11] Zhang Y, Gao F, Gao S and He L 2020 Sci. Bull. 65 194
[12] Jiang Y, Lo P W, May D, Li G, Guo G Y, Anders F B, Taniguchi T, Watanabe K, Mao J and Andrei E Y 2018 Nat. Commun. 9 2349
[13] Lieb E H 1989 Phys. Rev. Lett. 62 1201
[14] Yazyev O V and Helm L 2007 Phys. Rev. B 75 125408
[15] Uchoa B, Kotov V N, Peres N M R and Castro Neto A H 2008 Phys. Rev. Lett. 101 026805
[16] Yazyev O V 2010 Rep. Prog. Phys. 73 056501
[17] El-Barbary A A, Telling R H, Ewels C P, Heggie M I and Briddon P R 2003 Phys. Rev. B 68 144107
[18] Lehtinen P O, Foster A S, Ma Y, Krasheninnikov A V and Nieminen R M 2004 Phys. Rev. Lett. 93 187202
[19] Ugeda M M, Fernández-Torre D, Brihuega I, Pou P, Martínez-Galera A J, Pérez R and Gómez-Rodríguez J M 2011 Phys. Rev. Lett. 107 116803
[20] Lee C C, Yamada-Takamura Y and Ozaki T 2004 Phys. Rev. B 90 014401
[21] Padmanabhan H and Nanda B R K 2016 Phys. Rev. B 93 165403
[22] Ugeda M M, Brihuega I, Guinea F and Gomez-Rodríguez J M 2010 Phys. Rev. Lett. 104 096804
[23] Mao J, Jiang Y, Moldovan D, Li G, Watanabe K, Taniguchi T, Masir M R, Peeters F M and Andrei E Y 2016 Nat. Phys. 12 545
[24] Nair R R, Sepioni M, Tsai I L, Lehtinen O, Keinonen J, Krasheninnikov A V, Thomson T, Geim A K and Grigorieva I V 2012 Nat. Phys. 8 199
[25] Gao F, Zhang Y, He L, Gao S and Brandbyge M 2021 Phys. Rev. B 103 L241402
[26] Nanda B R K, Sherafati M, Popovic Z S and Satpathy S 2012 New J. Phys. 14 083004
[27] Chen J H, Li L, Cullen W G, Williams E D and Fuhrer M S 2011 Nat. Phys. 7 535
[28] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[29] Zhang Y, Tan Y W, Stormer H and Kim P 2005 Nature 438 201
[30] Novoselov K S, Mccann E, Morozov S V, Falko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nat. Phys. 2 177
[31] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[32] Mecklenburg M and Regan B C 2011 Phys. Rev. Lett. 106 116803
[33] Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D and Ishigami A M 2008 Nat. Phys. 4 377
[34] Bena C 2008 Phys. Rev. Lett. 100 076601
[35] Brihuega I, Mallet P, Bena C, Bose S, Michaelis C, Vitali L, Varchon F, Magaud L, Kern K and Veuillen J Y 2008 Phys. Rev. Lett. 101 206802
[36] Mallet P, Brihuega I, Bose S, Ugeda M M, Gomez-Rodríguez J M, Kern K and Veuillen J Y 2012 Phys. Rev. B 86 045444
[37] Dutreix C and Katsnelson M I 2016 Phys. Rev. B 93 035413
[38] Dutreix C, González-Herrero H, Brihuega I, Katsnelson M I, Chapelier C and Renard V T 2019 Nature 574 219
[39] Zhang Y, Su Y and He L 2020 Phys. Rev. Lett. 125 116804
[40] Zhang Y, Su Y and He L 2021 Nano Lett. 21 2526
[41] Nye J F and Berry M V 1974 Proc. R. Soc. London A 336 165
[42] Goerbig M O 2011 Rev. Mod. Phys. 83 1193
[43] Andrei E V, Li G and Du X 2012 Rep. Prog. Phys. 75 056501
[44] Miller D L, Kubista K D, Rutter G M, Ruan M, Heer W A, First P N and Stroscio J A 2009 Science 324 924
[45] Song Y J, Otte A F, Kuk Y, Hu Y, Torrance D B, First P N, Heer W A, Min H, Adam S, Stiles M D, MacDonald A H and Stroscio J A 2010 Nature 467 185
[46] Young A F, Dean C R, Wang L, Ren H, Cadden-Zimansky P, Watanabe K, Taniguchi T, Hone J, Shepard K L and Kim P 2012 Nat. Phys. 8 550
[47] Yin L J, Li S Y, Qiao J B, Nie J C and He L 2015 Phys. Rev. B 91 115405
[48] Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V and Rao C N R 2009 Adv. Mater. 21 4726
[49] Wang W X, Yin L J, Qiao J B, Cai T, Li S Y, Dou R F, Nie J C, Wu X and He L 2015 Phys. Rev. B 92 165420
[50] Castro Neto A H and Guinea F 2009 Phys. Rev. Lett. 103 026804
[51] Gmitra M, Kochan D and Fabian J 2013 Phys. Rev. Lett. 110 246602
[52] Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L and MacDonald A H 2006 Phys. Rev. B 74 165310
[53] Konschuh S, Gmitra M and Fabian J 2010 Phys. Rev. B 82 245412
[54] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater. 14 871
[55] Soumyanarayanan A, Reyren N, Fert A and Panagopoulos C 2016 Nature 539 509
[56] Avsar A, Tan J Y, Taychatanapat T, Balakrishnan J, Koon G K W, Yeo Y, Lahiri J, Carvalho A, Rodin A S, O'Farrell E C T, Eda G, Castro Neto A H and Ozyilmaz B 2014 Nat. Commun. 5 4875
[57] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[58] Cai T, Yang S A, Li X, Zhang F, Shi J, Yao W and Niu Q 2013 Phys. Rev. B 88 115140
[59] Zhang Q, Zhang Y, Hou Y, Xu R, Jia L, Huang Z, Hao X, Zhou J, Zhang T, Liu L, Xu Y, Gao H and Wang Y 2022 Nano Lett. 22 1190
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[11] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[14] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[15] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
No Suggested Reading articles found!