|
|
Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation |
Jiahao Yuan(袁嘉浩)1,2,†, Mengzhou Liao(廖梦舟)1,2,5,†, Zhiheng Huang(黄智恒)1,2, Jinpeng Tian(田金朋)1,2, Yanbang Chu(褚衍邦)1,2, Luojun Du(杜罗军)1, Wei Yang(杨威)1,2, Dongxia Shi(时东霞)1,2, Rong Yang(杨蓉)1,3,‡, and Guangyu Zhang(张广宇)1,2,4,§ |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 College of Semiconductors(College of Integrated Circuits), Hunan University, Changsha 410082, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China; 5 Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic |
|
|
Abstract Two-dimensional (2D) moiré materials have attracted a lot of attention and opened a new research frontier of twistronics due to their novel physical properties. Although great progress has been achieved, the inability to precisely and reproducibly manipulate the twist angle hinders the further development of twistronics. Here, we demonstrated an atomic force microscope (AFM) tip manipulation method to control the interlayer twist angle of epitaxial MoS2/graphene heterostructure with an ultra-high accuracy better than 0.1°. Furthermore, conductive AFM and spectroscopic characterizations were conducted to show the effects of the twist angle on moiré pattern wavelength, phonons and excitons. Our work provides a technique to precisely control the twist angle of 2D moiré materials, enabling the possibility to establish the phase diagrams of moiré physics with twist angle.
|
Received: 06 April 2022
Revised: 11 May 2022
Accepted manuscript online: 23 May 2022
|
PACS:
|
73.43.Fj
|
(Novel experimental methods; measurements)
|
|
73.21.Cd
|
(Superlattices)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
Fund: Project supported by the Natioanl Natural Science Foundation of China (Grant Nos. 62122084, 12074412, 61888102, and 11834017). |
Corresponding Authors:
Rong Yang, Guangyu Zhang
E-mail: ryang@iphy.ac.cn;gyzhang@iphy.ac.cn
|
Cite this article:
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇) Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation 2022 Chin. Phys. B 31 087302
|
[1] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 461 [2] He F, Zhou Y, Ye Z, Cho S H, Jeong J, Meng X and Wang Y 2021 ACS Nano 15 5944 [3] Du L J, Hasan T, Castellanos-Gomez A, Liu G B, Yao Y G, Lau C N and Sun Z P 2021 Nat. Rev. Phys. 3 193 [4] Andrei E Y and MacDonald A H 2020 Nat. Mater. 19 1265 [5] Tang K W and Qi W H 2020 Adv. Funct. Mater. 30 20 [6] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [7] Tran K, Moody G, Wu F, et al. 2019 Nature 567 71 [8] Liu J P and Dai X 2020 npj Comput. Mater. 6 10 [9] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653 [10] Kazmierczak N P, Van Winkle M, Ophus C, Bustillo K C, Carr S, Brown H G, Ciston J, Taniguchi T, Watanabe K and Bediako D K 2021 Nat. Mater. 20 956 [11] Purdie D G, Pugno N M, Taniguchi T, Watanabe K, Ferrari A C and Lombardo A 2018 Nat. Commun. 9 5387 [12] Lau C N, Bockrath M W, Mak K F and Zhang F 2022 Nature 602 41 [13] Yang W, Chen G, Shi Z, Liu C C, Zhang L, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Yao Y, Zhang Y and Zhang G 2013 Nat. Mater. 12 792 [14] Yu H, Yang Z, Du L, Zhang J, Shi J, Chen W, Chen P, Liao M, Zhao J, Meng J, Wang G, Zhu J, Yang R, Shi D, Gu L and Zhang G 2017 Small 13 1603005 [15] Liao M, Nicolini P, Du L, Yuan J, Wang S, Yu H, Tang J, Cheng P, Watanabe K, Taniguchi T, Gu L, Claerbout V E P, Silva A, Kramer D, Polcar T, Yang R, Shi D and Zhang G 2022 Nat. Mater. 21 47 [16] Yuan J, Yang R and Zhang G 2021 Nanotechnology 33 102002 [17] Wang D, Chen G, Li C, et al. 2016 Phys. Rev. Lett. 116 126101 [18] Du L J, Yu H, Liao M Z, Wang S P, Xie L, Lu X B, Zhu J Q, Li N, Shen C, Chen P, Yang R, Shi D X and Zhang G Y 2017 Appl. Phys. Lett. 111 263106 [19] Ribeiro-Palau R, Zhang C J, Watanabe K, Taniguchi T, Hone J and Dean C R 2018 Science 361 690 [20] Finney N R, Yankowitz M, Muraleetharan L, Watanabe K, Taniguchi T, Dean C R and Hone J 2019 Nat. Nanotechnol. 14 1029 [21] Hu C, Wu T, Huang X, Dong Y, Chen J, Zhang Z, Lyu B, Ma S, Watanabe K, Taniguchi T, Xie G, Li X, Liang Q and Shi Z 2022 Sci. Rep. 12 204 [22] Higgins M J, Proksch R, Sader J E, Polcik M, Mc Endoo S, Cleveland J P and Jarvis S P 2006 Review of Scientific Instruments 77 013701 [23] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401 [24] Ferrari A C 2007 Solid State Commun. 143 47 [25] Hod O, Meyer E, Zheng Q and Urbakh M 2018 Nature 563 485 [26] Yankowitz M, Xue J M, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J 2012 Nat. Phys. 8 382 [27] Conley H J, Wang B, Ziegler J I, Haglund R F, Jr., Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626 [28] Zhu C R, Wang G, Liu B L, Marie X, Qiao X F, Zhang X, Wu X X, Fan H, Tan P H, Amand T and Urbaszek B 2013 Phys. Rev. B 88 121301 [29] Liu G B, Xiao D, Yao Y, Xu X and Yao W 2015 Chem. Soc. Rev. 44 2643 [30] Ebnonnasir A, Narayanan B, Kodambaka S and Ciobanu C V 2014 Appl. Phys. Lett. 105 031603 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|