Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067304    DOI: 10.1088/1674-1056/acc805
RAPID COMMUNICATION Prev   Next  

Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene

Siyu Li(李思宇)1,2,†, Zhengwen Wang(王政文)2,†, Yucheng Xue(薛禹承)2, Lu Cao(曹路)3, Kenji Watanabe4, Takashi Taniguchi4, Hongjun Gao(高鸿钧)1,2, and Jinhai Mao(毛金海)2,‡
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Materials Science and Optoelectronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba 305-0044, Japan
Abstract  Twisted graphene systems with flat bands have attracted much attention for they are excellent platforms to research novel quantum phases. Recently, transport measurements about twisted monolayer-bilayer graphene (tMBG) have shown the existence of correlated states and topological states in this system. However, the direct observations of the band structures and the corresponding spatial distributions are still not sufficient. Here we show that the distributions of flat bands in tMBG host two different modes by scanning tunneling microscopy and spectroscopy (STM/S). By tuning our tMBG device from the empty filling state to the full filling state through the back gate, we observe that the distributions of two flat bands develop from localized mode to delocalized mode. This gate-controlled flat band wavefunction polarization is unique to the tMBG system. Our work suggests that tMBG is promising to simulate both twisted bilayer graphene (TBG) and twisted double bilayer graphene (tDBG) and would be an ideal platform to explore novel moiré physics.
Keywords:  graphene      Van der Waals heterostructures      scanning tunneling microscopy/spectroscopy  
Received:  07 February 2023      Revised:  24 March 2023      Accepted manuscript online:  28 March 2023
PACS:  73.22.Pr (Electronic structure of graphene)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  85.30.Tv (Field effect devices)  
Fund: We acknowledge support from the National Key R&D Program of China (Grant No. 2019YFA0307800), Beijing Natural Science Foundation (Grant No. Z190011), the National Natural Science Foundation of China (Grant No. 11974347), and Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Jinhai Mao     E-mail:  jhmao@ucas.ac.cn

Cite this article: 

Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海) Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene 2023 Chin. Phys. B 32 067304

[1] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H2016 Science 353 aac9439
[2] Geim A K and Grigorieva I V2013 Nature 499 419
[3] Bistritzer R and MacDonald A H2011 Proc. Natl. Acad. Sci. USA 108 12233
[4] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P2018 Nature 556 80
[5] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P2018 Nature 556 43
[6] Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A2020 Nature 588 610
[7] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J and Andrei E Y2019 Nature 573 91
[8] Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A and Pasupathy A N2019 Nature 572 95
[9] Xie Y, Lian B, Jack B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A2019 Nature 572 101
[10] Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H and Tutuc E2019 Phys. Rev. Lett. 123 197702
[11] Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V and Zhang G2020 Nat. Phys. 16 520
[12] Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A and Kim P2020 Nature 583 221
[13] Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T and Jarillo-Herrero P2020 Nature 583 215
[14] Xu S, Al Ezzi M M, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal'ko V I, Adam S, Neto A H C, Novoselov K S and Shi Y2021 Nat. Phys. 17 619
[15] Rademaker L, Protopopov I V and Abanin D A2020 Phys. Rev. Res. 2 033150
[16] Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R and Yankowitz M2020 Nat. Phys. 17 374
[17] Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H and Young A F2020 Nature 588 66
[18] Li S Y, Wang Z, Xue Y, Wang Y, Zhang S, Liu J, Zhu Z, Watanabe K, Taniguchi T, Gao H J, Jiang Y and Mao J2022 Nat. Commun. 13 4225
[19] Lopes Dos Santos J M, Peres N M and Castro Neto A H2007 Phys. Rev. Lett. 99 256802
[20] Wong D, Nuckolls K P, Oh M, Lian B, Xie Y, Jeon S, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A2020 Nature 582 198
[21] Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, von Oppen F, Watanabe K, Taniguchi T and Nadj-Perge S2019 Nat. Phys. 15 1174
[22] Rubio-Verdú C, Turkel S, Song Y, Klebl L, Samajdar R, Scheurer M S, Venderbos J W F, Watanabe K, Taniguchi T, Ochoa H, Xian L, Kennes D M, Fernandes R M, Rubioá and Pasupathy A N2021 Nat. Phys. 18 196
[23] Zhang C, Zhu T, Kahn S, Li S, Yang B, Herbig C, Wu X, Li H, Watanabe K, Taniguchi T, Cabrini S, Zettl A, Zaletel M P, Wang F and Crommie M F2021 Nat. Commun. 12 2516
[24] Kashiwagi M, Taen T, Uchida K, Watanabe K, Taniguchi T and Osada T2022 Jpn. J. Appl. Phys. 61 100907
[1] Controlled crossover of electron transport in graphene nanoconstriction: From Coulomb blockade to electron interference
Wei Yu(余炜), Xiao Guo(郭潇), Yuwen Cai(蔡煜文), Xiaotian Yu(俞晓天), and Wenjie Liang(梁文杰). Chin. Phys. B, 2023, 32(7): 077202.
[2] Er intercalation and its impact on transport properties of epitaxial graphene
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 066103.
[3] Morphological features and nanostructures generated during SiC graphitization process
Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 068103.
[4] Tunable correlation in twisted monolayer-trilayer graphene
Dongdong Ding(丁冬冬), Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(6): 067204.
[5] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[6] Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene
Meng-Meng Zhang(张蒙蒙), Feng Zhang(张凤), Qiang Wu(吴强), Xin Huang(黄欣), Wei Yan(闫巍),Chun-Mei Zhao(赵春梅), Wei Chen(陈伟), Zhi-Hong Yang(杨志红),Yun-Hui Wang(王允辉), and Ting-Ting Wu(武婷婷). Chin. Phys. B, 2023, 32(6): 066803.
[7] Long-range adsorbate interactions mediated by two-dimensional Dirac fermions
Xiaohui Wang(王晓慧), Zhen-Guo Fu(付振国), Zhigang Wang(王志刚), Feng Chi(迟锋), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(5): 057201.
[8] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[9] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[10] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[11] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[12] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[13] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[14] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[15] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
No Suggested Reading articles found!