Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 068103    DOI: 10.1088/1674-1056/acb766
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Morphological features and nanostructures generated during SiC graphitization process

Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群)
State Key Laboratory of Surface Physics&Department of Physics, Fudan University, Shanghai 200438, China
Abstract  Surface morphological features and nanostructures generated during SiC graphitization process can significantly affect fabrication of high-quality epitaxial graphene on semiconductor substrates. In this work, we investigate the surface morphologies and atomic structures during graphitization process of 4H-SiC (0001) using scanning tunneling microscopy. Our high-magnified scanning-tunneling-microscope images exhibit the appearance and gradual developments of SiC ($1\times 1$) nanostructures after 1100 $^\circ$C cleaning treatments, irregularly distributed among carbon nanocaps and $(\sqrt {3} {\times }\sqrt {3} )$ reconstruction domains. A model for the formation and growth progression of SiC ($1\times 1$) nanostructures has been proposed. When post-annealing temperature reaches 1300 $^\circ$C, the nanoholes and nanoislands can be observed on the surface, and multilayer graphene is often detected lying on the top surface of those nanoislands. These results provide profound insights into the complex evolution process of surface morphology during SiC thermal decomposition and will shed light on fabrication of SiC nanostructures and graphene nanoflakes.
Keywords:  scanning tunneling microscopy (STM)      SiC graphitization      epitaxial graphene      nanostructures  
Received:  05 December 2022      Revised:  24 January 2023      Accepted manuscript online:  31 January 2023
PACS:  81.05.ue (Graphene)  
  61.48.Gh (Structure of graphene)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
Fund: Project supported by the Natural Science Foundation of Shanghai Science and Technology Committee (Grant No. 18ZR1403300).
Corresponding Authors:  Qun Cai     E-mail:  qcai@fudan.edu.cn

Cite this article: 

Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群) Morphological features and nanostructures generated during SiC graphitization process 2023 Chin. Phys. B 32 068103

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Soldano C, Mahmood A and Dujardin E 2010 Carbon 48 2127
[3] Novoselov K S, Fal'Ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[4] Pu N W, Wang C A, Sung Y, Liu Y M and Ger M D 2009 Mater. Lett. 63 1987
[5] Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339
[6] Li D, Müller M B, Gilje S, Kaner R B and Wallace G G 2008 Nat. Nanotechnol. 3 101
[7] Somani P R, Somani S P and Umeno M 2006 Chem. Phys. Lett. 430 56
[8] Xin Y and Wan B 2019 Anal. Chim. Acta 1079 103
[9] Riedl C, Starke U, Bernhardt J, Franke M and Heinz K 2007 Phys. Rev. B 76 245406
[10] Gholam R Y, Tihomir I and Rositsa Y 2016 Crystals 6 53
[11] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Röhrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B and Seyller T 2009 Nat. Mater. 8 203
[12] Mårtensson P, Owman F and Johansson L I 1997 Phys. Status Solidi B 202 501
[13] Hisada Y, Hayashi K, Kato K, Aoyama T, Mukainakano S and Ichimiya A 2001 Jpn. J. Appl. Phys. 40 2211
[14] Li L and Tsong I S T 1996 Surf. Sci. 351 141
[15] Bolen M L, Harrison S E, Biedermann L B and Capano M A 2009 Phys. Rev. B 80 115433
[16] Chagas T, Pelc M, Gonçalves P H R, Antoniazzi I, González J W, Ayuela A, Lopes J M J, Oliveira M H, Magalhães-Paniago R and Malachias A 2019 Carbon 142 580
[17] McCann E and Koshino M 2013 Rep. Prog. Phys. 76 056503
[18] Silva A M, Pires M S, Freire V N, Albuquerque E L, Azevedo D L and Caetano E W S 2010 J. Phys. Chem. C 114 17472
[19] Lu Y, Wei S, Jin J, Lu W G and Wang L 2016 J. Appl. Phys. 120 204301
[20] Jikimoto T, Wang J L, Saito T, Hirai M, Kusaka M, Iwami M and Nakata T 1998 Appl. Surf. Sci. 130 593
[21] First P N, De Heer W A, Seyller T, Berger C, Stroscio J A and Moon J 2010 MRS Bull. 35 296
[22] Hisada Y, Mitsuoka Y, Mukainakano S, Suzuki H, Aoyama T and Ichimiya A 2004 e-J. Surf. Sci. Nanotechnol. 2 8
[23] Penuelas J, Ouerghi A, Lucot D, David C, Gierak J, Estrade-Szwarckopf H and Andreazza-Vignolle C 2009 Phys. Rev. B 79 033408
[24] Huang H, Chen W, Chen S and Wee A T S 2008 ACS Nano 2 2513
[25] Hannon J B and Tromp R M 2008 Phys. Rev. B 77 241404
[26] Guo Y, Guo L W, Lu W, Huang J, Jia Y P, Sun W, Li Z L and Wang Y F 2004 Chin. Phys. B 23 086501
[27] Hirai M, Marumoto Y, Tsukamoto T, Kusaka M, Iwami M, Ozawa T, Nagamura T and Nakata T 1996 Thin Solid Films 281-282 591
[28] Maruyama T, Sakakibara S, Naritsuka S and Amemiya K 2011 Diam. Relat. Mater. 20 1325
[29] Aristov V Y 2001 Phys.-Usp. 44 761
[30] Derycke V, Pham N P, Fonteneau P, Soukiassian P, Aboulet-Nze P, Monteil Y, Mayne A J, Dujardin G and Gautier J 2000 Appl. Surf. Sci. 162-163 413
[31] Tromp R M and Hannon J B 2009 Phys. Rev. Lett. 102 106104
[32] Forbeaux I, Themlin J M and Debever J M 1998 Phys. Rev. B 58 16396
[33] Geng D C, Hu J P, Fu W, Ang L K and Yang H Y 2019 ACS Appl. Mater. Interfaces 11 39109
[34] Hass J, de Heer W A and Conrad E H 2008 J. Phys.: Condens. Matter 20 323202
[35] Matsunami H 2004 Jpn. J. Appl. Phys. 43 6835
[36] Kimoto T and Matsunami H 1995 J. Appl. Phys. 78 3132
[37] Wei L W, Sheng M and Kaxiras E 2008 Nano Lett. 8 241
[38] Wirth-Lima A J, Alves-Sousa P P and Bezerra-Fraga W 2020 Chin. Phys. B 29 037801
[1] Er intercalation and its impact on transport properties of epitaxial graphene
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 066103.
[2] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[3] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[4] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[5] Brightening single-photon emitters by combining an ultrathin metallic antenna and a silicon quasi-BIC antenna
Shangtong Jia(贾尚曈), Zhi Li(李智), and Jianjun Chen(陈建军). Chin. Phys. B, 2022, 31(1): 014209.
[6] Moiré superlattice modulations in single-unit-cell FeTe films grown on NbSe2 single crystals
Han-Bin Deng(邓翰宾), Yuan Li(李渊), Zili Feng(冯子力), Jian-Yu Guan(关剑宇), Xin Yu(于鑫), Xiong Huang(黄雄), Rui-Zhe Liu(刘睿哲), Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Ying-Kai Sun(孙英开), Xi-Liang Peng(彭锡亮), Shuai-Shuai Li(李帅帅), Xin Du(杜鑫), Zheng Wang(王铮), Rui Wu(武睿), Jia-Xin Yin(殷嘉鑫), You-Guo Shi(石友国), and Han-Qing Mao(毛寒青). Chin. Phys. B, 2021, 30(12): 126801.
[7] Morphological effect on electrochemical performance of nanostructural CrN
Zhengwei Xiong(熊政伟), Xuemei An(安雪梅), Qian Liu(刘倩), Jiayi Zhu(朱家艺), Xiaoqiang Zhang(张小强), Chenchun Hao(郝辰春), Qiang Yang(羊强), Zhipeng Gao(高志鹏), and Meng Zhang(张盟). Chin. Phys. B, 2021, 30(12): 128201.
[8] Superchiral fields generated by nanostructures and their applications for chiral sensing
Huizhen Zhang(张慧珍), Weixuan Zhang(张蔚暄), Saisai Hou(侯赛赛), Rongyao Wang(王荣瑶), and Xiangdong Zhang(张向东). Chin. Phys. B, 2021, 30(11): 113303.
[9] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[10] Epitaxial fabrication of monolayer copper arsenide on Cu(111)
Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
[11] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[12] Epitaxial growth and air-stability of monolayer Cu2Te
K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
[13] Broadband visible light absorber based on ultrathin semiconductor nanostructures
Lin-Jin Huang(黄林锦), Jia-Qi Li(李嘉麒), Man-Yi Lu(卢漫仪), Yan-Quan Chen(陈彦权), Hong-Ji Zhu(朱宏基), Hai-Ying Liu(刘海英). Chin. Phys. B, 2020, 29(1): 014201.
[14] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[15] Lorentz transmission electron microscopy for magnetic skyrmions imaging
Jin Tang(汤进), Lingyao Kong(孔令尧), Weiwei Wang(王伟伟), Haifeng Du(杜海峰), Mingliang Tian(田明亮). Chin. Phys. B, 2019, 28(8): 087503.
No Suggested Reading articles found!