Abstract Surface morphological features and nanostructures generated during SiC graphitization process can significantly affect fabrication of high-quality epitaxial graphene on semiconductor substrates. In this work, we investigate the surface morphologies and atomic structures during graphitization process of 4H-SiC (0001) using scanning tunneling microscopy. Our high-magnified scanning-tunneling-microscope images exhibit the appearance and gradual developments of SiC () nanostructures after 1100 C cleaning treatments, irregularly distributed among carbon nanocaps and reconstruction domains. A model for the formation and growth progression of SiC () nanostructures has been proposed. When post-annealing temperature reaches 1300 C, the nanoholes and nanoislands can be observed on the surface, and multilayer graphene is often detected lying on the top surface of those nanoislands. These results provide profound insights into the complex evolution process of surface morphology during SiC thermal decomposition and will shed light on fabrication of SiC nanostructures and graphene nanoflakes.
Fund: Project supported by the Natural Science Foundation of Shanghai Science and Technology Committee (Grant No. 18ZR1403300).
Corresponding Authors:
Qun Cai
E-mail: qcai@fudan.edu.cn
Cite this article:
Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群) Morphological features and nanostructures generated during SiC graphitization process 2023 Chin. Phys. B 32 068103
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science306 666 [2] Soldano C, Mahmood A and Dujardin E 2010 Carbon48 2127 [3] Novoselov K S, Fal'Ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature490 192 [4] Pu N W, Wang C A, Sung Y, Liu Y M and Ger M D 2009 Mater. Lett.63 1987 [5] Hummers W S and Offeman R E 1958 J. Am. Chem. Soc.80 1339 [6] Li D, Müller M B, Gilje S, Kaner R B and Wallace G G 2008 Nat. Nanotechnol.3 101 [7] Somani P R, Somani S P and Umeno M 2006 Chem. Phys. Lett.430 56 [8] Xin Y and Wan B 2019 Anal. Chim. Acta1079 103 [9] Riedl C, Starke U, Bernhardt J, Franke M and Heinz K 2007 Phys. Rev. B76 245406 [10] Gholam R Y, Tihomir I and Rositsa Y 2016 Crystals6 53 [11] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Röhrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B and Seyller T 2009 Nat. Mater.8 203 [12] Mårtensson P, Owman F and Johansson L I 1997 Phys. Status Solidi B202 501 [13] Hisada Y, Hayashi K, Kato K, Aoyama T, Mukainakano S and Ichimiya A 2001 Jpn. J. Appl. Phys.40 2211 [14] Li L and Tsong I S T 1996 Surf. Sci.351 141 [15] Bolen M L, Harrison S E, Biedermann L B and Capano M A 2009 Phys. Rev. B80 115433 [16] Chagas T, Pelc M, Gonçalves P H R, Antoniazzi I, González J W, Ayuela A, Lopes J M J, Oliveira M H, Magalhães-Paniago R and Malachias A 2019 Carbon142 580 [17] McCann E and Koshino M 2013 Rep. Prog. Phys.76 056503 [18] Silva A M, Pires M S, Freire V N, Albuquerque E L, Azevedo D L and Caetano E W S 2010 J. Phys. Chem. C114 17472 [19] Lu Y, Wei S, Jin J, Lu W G and Wang L 2016 J. Appl. Phys.120 204301 [20] Jikimoto T, Wang J L, Saito T, Hirai M, Kusaka M, Iwami M and Nakata T 1998 Appl. Surf. Sci.130 593 [21] First P N, De Heer W A, Seyller T, Berger C, Stroscio J A and Moon J 2010 MRS Bull.35 296 [22] Hisada Y, Mitsuoka Y, Mukainakano S, Suzuki H, Aoyama T and Ichimiya A 2004 e-J. Surf. Sci. Nanotechnol.2 8 [23] Penuelas J, Ouerghi A, Lucot D, David C, Gierak J, Estrade-Szwarckopf H and Andreazza-Vignolle C 2009 Phys. Rev. B79 033408 [24] Huang H, Chen W, Chen S and Wee A T S 2008 ACS Nano2 2513 [25] Hannon J B and Tromp R M 2008 Phys. Rev. B77 241404 [26] Guo Y, Guo L W, Lu W, Huang J, Jia Y P, Sun W, Li Z L and Wang Y F 2004 Chin. Phys. B23 086501 [27] Hirai M, Marumoto Y, Tsukamoto T, Kusaka M, Iwami M, Ozawa T, Nagamura T and Nakata T 1996 Thin Solid Films281-282 591 [28] Maruyama T, Sakakibara S, Naritsuka S and Amemiya K 2011 Diam. Relat. Mater.20 1325 [29] Aristov V Y 2001 Phys.-Usp.44 761 [30] Derycke V, Pham N P, Fonteneau P, Soukiassian P, Aboulet-Nze P, Monteil Y, Mayne A J, Dujardin G and Gautier J 2000 Appl. Surf. Sci.162-163 413 [31] Tromp R M and Hannon J B 2009 Phys. Rev. Lett.102 106104 [32] Forbeaux I, Themlin J M and Debever J M 1998 Phys. Rev. B58 16396 [33] Geng D C, Hu J P, Fu W, Ang L K and Yang H Y 2019 ACS Appl. Mater. Interfaces11 39109 [34] Hass J, de Heer W A and Conrad E H 2008 J. Phys.: Condens. Matter20 323202 [35] Matsunami H 2004 Jpn. J. Appl. Phys.43 6835 [36] Kimoto T and Matsunami H 1995 J. Appl. Phys.78 3132 [37] Wei L W, Sheng M and Kaxiras E 2008 Nano Lett.8 241 [38] Wirth-Lima A J, Alves-Sousa P P and Bezerra-Fraga W 2020 Chin. Phys. B29 037801
Epitaxial fabrication of monolayer copper arsenide on Cu(111) Shuai Zhang(张帅), Yang Song(宋洋), Jin Mei Li(李金梅), Zhenyu Wang(王振宇), Chen Liu(刘晨), Jia-Ou Wang(王嘉鸥), Lei Gao(高蕾), Jian-Chen Lu(卢建臣), Yu Yang Zhang(张余洋), Xiao Lin(林晓), Jinbo Pan(潘金波), Shi Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 077301.
Epitaxial growth and air-stability of monolayer Cu2Te K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.