CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment |
Xinchuang Zhang(张新创)1, Mei Wu(武玫)2, Bin Hou(侯斌)2, Xuerui Niu(牛雪锐)2, Hao Lu(芦浩)2, Fuchun Jia(贾富春)2, Meng Zhang(张濛)2, Jiale Du(杜佳乐)2, Ling Yang(杨凌)2, Xiaohua Ma(马晓华)2,†, and Yue Hao(郝跃)2 |
1 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China; 2 School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract The N2O radicals in-situ treatment on gate region has been employed to improve device performance of recessed-gate AlGaN/GaN high-electron-mobility transistors (HEMTs). The samples after gate recess etching were treated by N2O radicals without physical bombardment. After in-situ treatment (IST) processing, the gate leakage currents decreased by more than one order of magnitude compared to the sample without IST. The fabricated HEMTs with the IST process show a low reverse gate current of 10-9 A/mm, high on/off current ratio of 108, and high fT×Lg of 13.44 GHz· μm. A transmission electron microscope (TEM) imaging illustrates an oxide layer with a thickness of 1.8 nm exists at the AlGaN surface. X-ray photoelectron spectroscopy (XPS) measurement shows that the content of the Al-O and Ga-O bonds elevated after IST, indicating that the Al-N and Ga-N bonds on the AlGaN surface were broken and meanwhile the Al-O and Ga-O bonds formed. The oxide formed by a chemical reaction between radicals and the surface of the AlGaN barrier layer is responsible for improved device characteristics.
|
Received: 31 August 2021
Revised: 07 November 2021
Accepted manuscript online:
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
85.30.Tv
|
(Field effect devices)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2018YFB1802100),the National Natural Science Foundation of China (Grant Nos.62104184,62090014,62104178,and 62104179),the Fundamental Research Funds for the Central Universities of China (Grant Nos.XJS201102,XJS211101,XJS211106,and ZDRC2002),and the Natural Science Foundation of Shaanxi Province,China (Grant Nos.2020JM-191 and 2018HJCG-20). |
Corresponding Authors:
Xiaohua Ma,E-mail:xhma@xidian.edu.cn
E-mail: xhma@xidian.edu.cn
|
About author: 2022-1-7 |
Cite this article:
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃) Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment 2022 Chin. Phys. B 31 057301
|
[1] Chung J W, Hoke W E, Chumbes E M and Palacios T 2010 IEEE Electron Dev. Lett. 31 195 [2] Karmalkar S and Mishra U K 2001 IEEE Trans. Electron Dev. 48 1515 [3] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Dev. Lett. 25 117 [4] Akasaki I, Amano H, Kito M and Hiramatsu K 1991 J. Lumin. 48 666 [5] Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653 [6] Cao X A, Pearton S J, Dang G T, Zhang A P, Ren F and Van Hove J M 2000 IEEE Trans. Electron Dev. 47 1320 [7] Minami M, Tomiya S, Ishikawa K, Matsumoto R, Shang C, Fukasawa M, Uesawa F, Sekine M, Hori M and Tatsumi T 2011 Jpn. J. Appl. Phys. 50 08JE03 [8] Choi K J, Jang H W and Lee J L 2002 Appl. Phys. Lett. 82 1233 [9] Wang X, Yu G, Lei B, Wang X, Lin C, Sui Y, Meng S, Qi M and Li A 2007 J. Electron. Mater. 36 697 [10] Tajima M, Kotani J and Hashizume T 2009 Jpn J. Appl. Phys. 48 020203 [11] Kim H, Schuette M L and Lu W 2011 J. Vac. Sci. Technol. B 29 031204 [12] Basu A, Kumar V and Adesida I 2007 J. Vac. Sci. Technol. B 25 2607 [13] Kim K W, Jung S D, Kim D S, Kang H S, Im K S, Oh J J, Ha J B, Shin J K and Lee J H 2011 IEEE Electron Dev. Lett. 32 1376 [14] Zhu J, Jing S, Ma X, Liu S, Wang P, Zhang Y, Zhu Q, Mi M, Hou B, Yang L, Kuball M and Hao Y 2020 IEEE Trans. Electron Dev. 67 3541 [15] Mi MH, Zhang K, Zhao S L, Wang C, Zhang J C, Ma X H and Hao Y 2015 Chin. Phys. B 24 027303 [16] Chiu H C, Yang C W, Chen C H, Fu J S and Chien F T 2011 Appl. Phys. Lett. 99 153508 [17] Li M, Wang J, Wang H, Cao Q, Li J and Huang C 2019 Solid-State Electron. 156 58 [18] Cui P, Zhang J, Yang T Y, Chen H, Zhao H C, Lin G, Wei L, John Q Xiao, Chueh Y and Zeng Y 2020 J. Phys. D: Appl. Phys 53 065103 [19] Liu L, Xi Y, Ahh S, Ren F, Gila B P, Pearton S J and Kravchenko I I 2014 J. Vac. Sci. Technol. B 32 052201 [20] Oehrlein G S and Hamaguchi S 2018 Plasma Sources Sci. Technol. 27 023001 [21] Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 77 250 [22] Colinge C J P and Colinge A 2002 Physics of Semiconductor Devices (Springer, Boston, MA: Kluwer Academic Publishers) pp. 145-146 [23] Miller E J, Dang X Z and Yu E T 2000 J. Appl. Phys. 88 5951 [24] Chung J W, Roberts J C, Piner E L and Palacios T 2008 IEEE Electron Dev. Lett. 29 1196 [25] Wang X, Huang S, Zheng Y, Wei K, Chen X, Zhang H and Liu X 2014 IEEE Trans. Electron Dev. 61 1341 [26] Binari S C, Ikossi K, Roussos J A, Kruppa W, Park D, Dietrich H B, Koleske D D, Wickenden A E and Henry R L 2001 IEEE Trans. Electron Dev. 48 465 [27] Lewandkow R, Grodzicki M, Mazur P and Ciszewski A 2020 Vacuum 177 109345 [28] Okubo S, Horikawa K, Kawarada H and Hiraiwa A 2019 J. Appl. Phys. 126 045704 [29] Lin Z, Lu W, Lee J, Liu D, Flynn J S and Brande G R 2003 Appl. Phys. Lett. 82 4364 [30] Zhang Y, Huang S, Wei K, Zhang S, Wang X, Zheng Y, Liu G, Chen X Li Y and Liu G 2020 IEEE Electron Dev. Lett. 41 701 [31] Wang R H, Li G W, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Jena D and Xing H L 2011 IEEE Electron Dev. Lett. 32 892 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|