Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 025201    DOI: 10.1088/1674-1056/ac673d
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge

Ya-Rong Zhang(张亚容)1, Qian-Han Han(韩乾翰)1, Jun-Lin Fang(方骏林)1, Ying Guo(郭颖)1,2, and Jian-Jun Shi(石建军)1,2,†
1 College of Science, Donghua University, Shanghai 201620, China;
2 Textile Key Laboratory for Advanced Plasma Technology and Application, Donghua University, Shanghai 201620, China
Abstract  A cascade glow discharge in atmospheric helium was excited by a microsecond voltage pulse and a pulse-modulated radio frequency (RF) voltage, in which the discharge ignition dynamics of the RF discharge burst was investigated experimentally. The spatio-temporal evolution of the discharge, the ignition time and optical emission intensities of plasma species of the RF discharge burst were investigated under different time intervals between the pulsed voltage and RF voltage in the experiment. The results show that by increasing the time interval between the pulsed discharge and RF discharge burst from 5 μs to 20 μs, the ignition time of the RF discharge burst is increased from 1.6 μs to 2.0 μs, and the discharge spatial profile of RF discharge in the ignition phase changes from a double-hump shape to a bell-shape. The light emission intensity at 706 nm and 777 nm at different time intervals indicates that the RF discharge burst ignition of the depends on the number of residual plasma species generated in the pulsed discharges.
Keywords:  pulsed voltage modulated radio frequency      radio frequency (RF) discharge burst      residual plasma species  
Received:  29 January 2022      Revised:  01 April 2022      Accepted manuscript online:  14 April 2022
PACS:  52.20.-j (Elementary processes in plasmas)  
  52.40.-w (Plasma interactions (nonlaser))  
  52.80.-s (Electric discharges)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875104 and 12175036).
Corresponding Authors:  Jian-Jun Shi     E-mail:  jshi@dhu.edu.cn

Cite this article: 

Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军) Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge 2023 Chin. Phys. B 32 025201

[1] Archambault-Caron M, Gagnon H, Nisol B, Piyakis K and Wertheimer M R 2015 Plasma Sources Sci. Technol. 24 045004
[2] Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L and Wang S 2017 Plasma Sci. Technol. 19 125401
[3] Navik R, Shafi S, Alam M M, Farooq M A, Lin L N and Cai Y J 2018 Plasma Sci. Technol. 20 065504
[4] Dimitrakellis P, Giannoglou M, Xanthou Z M, Gogolides E, Taoukis P and Katsaros G 2017 Plasma Process. Polym. 14 1600069
[5] Šerá B and Šerý M 2018 Plasma Sci. Technol. 20 044012
[6] Boekema B K H L, Vlig M, Guijt D, Hijnen K, Hofmann S, Smits P, Sobota A, Veldhuizen E M V, Bruggenman P and Middelkoop E 2016 J. Phys. D: Appl. Phys. 49 044001
[7] Hu M and Guo Y 2012 Plasma Sci. Technol. 14 735
[8] Dimitrakellis P, Zeniou A, Stratakos Y and Gogolides E 2016 Plasma Sources Sci. Technol. 25 025015
[9] Chang D L, Li X S, Zhao T L, Yang J H and Zhu A M 2012 Chem. Vapor Deposit. 18 121
[10] Bazinette R, Paillil J, Lelievre J F and Massines F 2016 Plasma Process. Polym. 13 1015
[11] Shi J J and Kong M G 2005 IEEE Trans. Plasma Sci. 33 278
[12] Park J Y, Henins I, Herrmann H W and Selwyn G S 2001 J. Appl. Phys. 89 20
[13] Liu D W, Shi J J and Kong M G 2007 Appl. Phys. Lett. 90 041502
[14] Farouk T, Farouk B, Gutsol A and Fridman A 2008 Plasma Sources Sci. Technol. 17 035015
[15] Shi J J, Cai Y Q, Zhang J, Ding K and Zhang J 2009 Phys. Plasmas 16 070702
[16] Shi J J, Cai Y Q, Zhang J and Yang Y 2009 Thin Solid Films 518 962
[17] Shi J J, Zhang J, Qiu G, Walsh J L and Kong M G 2008 Appl. Phys. Lett. 93 041502
[18] Guo Y, Han Q H, Wang X D and Shi J J 2017 Phys. Plasmas 24 073514
[19] Lu X P and Laroussi M 2006 J. Appl. Phys. 100 063302
[20] Laroussi M and Liu X 2004 J. Appl. Phys. 96 3028
[21] Shi J J and Kong M G 2006 Phys. Rev. Lett. 96 105009
[22] Moon S Y and Choe W 2006 Phys. Plasmas 13 103503
[23] Sun W T, Liang T R, Wang H B, Li H P and Bao C Y 2007 Plasma Sources Sci. Technol. 16 290
[24] Shi J J, Liu D W and Kong M G 2007 Appl. Phys. Lett. 90 031505
[25] Liu D W, Shi J J Kong M G 2007 Appl. Phys. Lett. 90 041502
[26] Nersisyan G and Graham W G 2004 Plasma Sources Sci. Technol. 13 582
[1] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[2] Debye-screening effect on electron-impact excitation of helium-like Al11+ and Fe24+ ions
Yu-Long Ma(马玉龙), Ling Liu(刘玲), Lu-You Xie(颉录有), Yong Wu(吴勇), Deng-Hong Zhang(张登红), Chen-Zhong Dong(董晨钟), Yi-Zhi Qu(屈一至), and Jian-Guo Wang(王建国). Chin. Phys. B, 2022, 31(4): 043401.
[3] Delta distribution of electronegative plasma predicted by reformed “spring oscillator” dynamic equation with dispersing force
Shu-Xia Zhao(赵书霞) and Jing-Ze Li(李京泽). Chin. Phys. B, 2021, 30(5): 055202.
[4] Quasi-delta negative ions density of Ar/O2 inductively coupled plasma at very low electronegativity
Shu-Xia Zhao(赵书霞). Chin. Phys. B, 2021, 30(5): 055201.
[5] Resonances for positron-helium and positron-lithium systems in kappa-distribution plasma
Zi-Shi Jiang(姜子实), Ya-Chen Gao(高亚臣), Sabyasachi Kar, Kurunathan Ratnavelu. Chin. Phys. B, 2018, 27(12): 123402.
[6] Observation of double pseudowaves in an ion-beam-plasma system
Zi-An Wei(卫子安), Jin-Xiu Ma(马锦秀), Kai-Yang Yi(弋开阳). Chin. Phys. B, 2018, 27(8): 085201.
[7] Comparisons of electrical and optical properties between graphene and silicene-A review
Wirth-Lima A J, Silva M G, Sombra A S B. Chin. Phys. B, 2018, 27(2): 023201.
[8] Numerical study on discharge characteristics influenced by secondary electron emission in capacitive RF argon glow discharges by fluid modeling
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2018, 27(2): 025201.
[9] Numerical study on the gas heating mechanism in pulse-modulated radio-frequency glow discharge
Qi Wang(王奇), Xiao-Li Yu(于晓丽), De-Zhen Wang(王德真). Chin. Phys. B, 2017, 26(3): 035201.
[10] Conversion of an atomic to a molecular argon ion and low pressure argon relaxation
M N Stankov, A P Jovanović, V Lj Marković, S N Stamenković. Chin. Phys. B, 2016, 25(1): 015204.
[11] Study of hysteresis behavior in reactive sputtering of cylindrical magnetron plasma
H. Kakati, S. M. Borah. Chin. Phys. B, 2015, 24(12): 125201.
[12] Fast-electron-impact ionization process by 3p of hydrogen-like ions in Debye plasmas
Qi Yue-Ying (祁月盈), Ye Dan-Dan (叶丹丹), Wang Jian-Guo (王建国), Qu Yi-Zhi (屈一至). Chin. Phys. B, 2015, 24(3): 033403.
[13] Mode transition in homogenous dielectric barrier discharge in argon at atmospheric pressure
Liu Fu-Cheng (刘富成), He Ya-Feng (贺亚峰), Wang Xiao-Fei (王晓菲). Chin. Phys. B, 2014, 23(7): 075209.
[14] Analysis of electron energy distribution function in a magnetically filtered complex plasma
M K Deka, H Bailung, N C Adhikary. Chin. Phys. B, 2013, 22(4): 045201.
[15] Static electric dipole polarizability of lithium atom in Debye plasmas
Ning Li-Na (宁丽娜), Qi Yue-Ying (祁月盈). Chin. Phys. B, 2012, 21(12): 123201.
No Suggested Reading articles found!