Topological Lifshitz transition and novel edge states induced by non-Abelian SU(2) gauge field on bilayer honeycomb lattice
Wen-Xiang Guo(郭文祥) and Wu-Ming Liu(刘伍明)1,2
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract We investigate the SU(2) gauge effects on bilayer honeycomb lattice thoroughly. We discover a topological Lifshitz transition induced by the non-Abelian gauge potential. Topological Lifshitz transitions are determined by topologies of Fermi surfaces in the momentum space. Fermi surface consists of N = 8 Dirac points at π-flux point instead of N = 4 in the trivial Abelian regimes. A local winding number is defined to classify the universality class of the gapless excitations. We also obtain the phase diagram of gauge fluxes by solving the secular equation. Furthermore, the novel edge states of biased bilayer nanoribbon with gauge fluxes are also investigated.
Fund: This work was supported by the National Key R&D Program of China (Grant Nos.2021YFA1400900,2021YFA0718300,and 2021YFA1400243) and the National Natural Science Foundation of China (Grant No.61835013).
Wen-Xiang Guo(郭文祥) and Wu-Ming Liu(刘伍明) Topological Lifshitz transition and novel edge states induced by non-Abelian SU(2) gauge field on bilayer honeycomb lattice 2022 Chin. Phys. B 31 057302
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys.82 3045 [2] Qi X L and Zhang S C 2011 Rev. Mod. Phys.83 1057 [3] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys.88 035005 [4] Volovik G E 2007 Lect. Notes Phys.718 31 [5] Volovik G E 2017 Low Temp. Phys.43 47 [6] Kotov V N, Uchoa B and Sushkov O P 2021 Phys. Rev. B103 045403 [7] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature438 197 [8] Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D and Soljačić M 2015 Science349 622 [9] Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X5 031013 [10] Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B84 235126 [11] Fang C, Chen Y, Kee H Y and Fu L 2015 Phys. Rev. B92 081201 [12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science306 666 [13] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys.81 109 [14] Abergel D S L, Apalkov V, Berashevich J, Ziegler K and Chakraborty T 2010 Adv. Phys.59 261 [15] McCann E and Koshino M 2013 Rep. Prog. Phys.76 056503 [16] Bloch I 2005 Nat. Phys.1 23 [17] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys.80 885 [18] Jördens R, Strohmaier N, Günter K, Moritz H and Esslinger T 2008 Nature455 204 [19] Schneider U, Hackermuller L, Will S, Best T, Bloch I, Costi T A, Helmes R W, Rasch D and Rosch A 2008 Science322 1520 [20] Koepsell J, Bourgund D, Sompet P, Hirthe S, Bohrdt A, Wang Y, Grusdt F, Demler E, Salomon G, Gross C and Bloch I 2021 Science374 82 [21] Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P and Pan J W 2020 Nature587 392 [22] Ruseckas J, Juzeliūnas G, öhberg P and Fleischhauer M 2005 Phys. Rev. Lett.95 010404 [23] Lin Y J, Compton R, Perry A, Phillips W, Porto J and Spielman I 2009 Phys. Rev. Lett.102 130401 [24] Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature462 628 [25] Lin Y J, Compton R L, Jiménez-García K, Phillips W D, Porto J V and Spielman I B 2011 Nat. Phys.7 531 [26] Dalibard J, Gerbier F, Juzeliūnas G and öhberg P 2011 Rev. Mod. Phys.83 1523 [27] Goldman N, Juzeliūnas G, öhberg P and Spielman I B 2014 Rep. Prog. Phys.77 126401 [28] Goldman N, Kubasiak A, Bermudez A, Gaspard P, Lewenstein M and Martin-Delgado M A 2009 Phys. Rev. Lett.103 035301 [29] Goldman N, Kubasiak A, Gaspard P and Lewenstein M 2009 Phys. Rev. A79 023624 [30] Bermudez A, Goldman N, Kubasiak A, Lewenstein M and Martin-Delgado M A 2010 New J. Phys.12 033041 [31] Sun F, Yu X L, Ye J, Fan H and Liu W M 2013 Sci. Rep.3 2119 [32] Wu W, Chen Y H, Tao H S, Tong N H and Liu W M 2010 Phys. Rev. B82 245102 [33] Chen Y H, Wu W, Tao H S and Liu W M 2010 Phys. Rev. A82 043625 [34] Wu W, Rachel S, Liu W M and Le Hur K 2012 Phys. Rev. B85 205102 [35] Chen Y H, Tao H S, Yao D X and Liu W M 2012 Phys. Rev. Lett.108 246402 [36] Wang L and Fu L 2013 Phys. Rev. A87 053612 [37] Chen Y H, Li J and Ting C S 2013 Phys. Rev. B88 195130 [38] Lin H F, Chen Y H, Liu H D, Tao H S and Liu W M 2014 Phys. Rev. A90 053627 [39] San-Jose P, González J and Guinea F 2012 Phys. Rev. Lett.108 216802 [40] Li L, Hao N, Liu G, Bai Z, Li Z D, Chen S and Liu W M 2015 Phys. Rev. A92 063618 [41] Lepori L, Fulga I C, Trombettoni A and Burrello M 2016 Phys. Rev. A94 053633 [42] Huang B B and Wan S L 2011 Chin. Phys. Lett.28 060303 [43] McCann E and Fal'ko V I 2006 Phys. Rev. Lett.96 086805 [44] Geim A K 2009 Science324 1530 [45] Gold C, Knothe A, Kurzmann A, Garcia-Ruiz A, Watanabe K, Taniguchi T, Fal'ko V, Ensslin K and Ihn T 2021 Phys. Rev. Lett.127 046801 [46] Castro E V, Novoselov K S, Morozov S V, Peres N M R, dos Santos J M B L, Nilsson J, Guinea F, Geim A K and Neto A H C 2007 Phys. Rev. Lett.99 216802 [47] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature459 820 [48] Wang T, Guo Q, Liu Y and Sheng K 2012 Chin. Phys. B21 067301 [49] Ulstrup S, Johannsen J C, Cilento F, Miwa J A, Crepaldi A, Zacchigna M, Cacho C, Chapman R, Springate E, Mammadov S, Fromm F, Raidel C, Seyller T, Parmigiani F, Grioni M, King P D C and Hofmann P 2014 Phys. Rev. Lett.112 257401 [50] Murray J M and Vafek O 2014 Phys. Rev. B89 205119 [51] Vafek O, Murray J M and Cvetkovic V 2014 Phys. Rev. Lett.112 147002 [52] Tao H S, Chen Y H, Lin H F, Liu H D and Liu W M 2014 Sci. Rep.4 5367 [53] Mishra A and Lee S 2019 Phys. Rev. B100 045146 [54] Sun J H and Tang H K 2018 Chin. Phys. B27 077502 [55] Zhao X M, Wu Y J, Chen C, Liang Y and Kou S P 2016 Chin. Phys. B25 117303 [56] Zhang H, Arlego M and Lamas C A 2014 Phys. Rev. B89 024403 [57] Owerre S A 2016 Phys. Rev. B94 094405 [58] Zhang H, Lamas C A, Arlego M and Brenig W 2016 Phys. Rev. B93 235150 [59] Li J, Fu H, Yin Z, Watanabe K, Taniguchi T and Zhu J 2019 Phys. Rev. Lett.122 097701 [60] Hofstadter D R 1976 Phys. Rev. B14 2239 [61] Graf M and Vogl P 1995 Phys. Rev. B51 4940 [62] Malard L M, Nilsson J, Elias D C, Brant J C, Plentz F, Alves E S, Castro Neto A H and Pimenta M A 2007 Phys. Rev. B76 201401 [63] Nilsson J, Castro Neto A H, Guinea F and Peres N M R 2008 Phys. Rev. B78 045405 [64] Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L and Basov D N 2009 Phys. Rev. Lett.102 037403 [65] Kuzmenko A B, Crassee I, van der Marel D, Blake P and Novoselov K S 2009 Phys. Rev. B80 165406 [66] Wen X and Zee A 1989 Nucl. Phys. B316 641 [67] Castro E V, Peres N M R, Lopes dos Santos J M B, Neto A H C and Guinea F 2008 Phys. Rev. Lett.100 026802 [68] Goldman N, Beugnon J and Gerbier F 2012 Phys. Rev. Lett.108 255303
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.