Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 047103    DOI: 10.1088/1674-1056/abccba
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor

Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪)
1 The 58 th Institution of Electronic Science and Technology Group Corporation of China, Wuxi 214000, China
Abstract  The degradation mechanisms of enhancement-mode p-GaN gate AlGaN/GaN high-electron mobility transistor was analyzed extensively, by means of drain voltage stress and gate bias stress. The results indicate that: (i) High constant drain voltage stress has only a negligible impact on the device electrical parameters, with a slightly first increase and then decrease in output current; (ii) A negative shift of threshold voltage and increased output current were observed in the device subjected to forward gate bias stress, which is mainly ascribed to the hole-trapping induced by high electric field across the p-GaN/AlGaN interface; (iii) The analyzed device showed an excellent behavior at reverse gate bias stress, with almost unaltered threshold voltage, output current, and gate leakage current, exhibiting a large gate swing in the negative direction. The results are meaningful and valuable in directing the process optimization towards a high voltage and high reliable enhanced AlGaN/GaN high-electron mobility transistor.
Keywords:  high-electron-mobility transistors (HEMTs)      stress      degradation      threshold voltage  
Received:  15 October 2020      Revised:  12 November 2020      Accepted manuscript online:  23 November 2020
PACS:  71.55.Eq (III-V semiconductors)  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by the Equipment Developing Advanced Research Program of China (Grant No. 6140A24030107).
Corresponding Authors:  Corresponding author. E-mail: cetc_songsd@163.com   

Cite this article: 

Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪) Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor 2021 Chin. Phys. B 30 047103

1 Kuzhara M and Tokuda H 2015 IEEE Trans. Electron Dev. 62 405
2 Millan J, Godignon P, Perpina X, Perez-Tomas A and Rebollo J 2014 IEEE Trans. Power Electron. 29 2155
3 Hilt O, Bahat-Treidel E, Knauer A, Brunner F, Zhytnyska R and Würfl J 2015 MRS Bull. 40 418
4 Wu T L, Marcon D, You S, Posthuma N E, Bakeroot B, Stoffels S, Van Hove M, Groeseneken G and Decoutere S 2015 IEEE Electron Dev. Lett. 36 1001
5 He Y L, Wang C, Mi M H, Zheng X F, Zhang M, Zhao M D, Zhang H S, Chen L X, Zhang J C, Ma X H and Hao Y 2016 Chin. Phys. B 25 117305
6 Kanamura M, Ohki T, Kikkawa T, Imanishi K, Imada T, Yamada A and Hara N 2010 IEEE Electron Dev. Lett. 31 189
7 Liu S C, Chen B Y, Lin Y C, Hsieh T E, Wang H C and Chang E Y 2014 IEEE Electron Dev. Lett. 35 1001
8 Hua M Y, Liu C, Yang S, Liu S H, Fu K, Dong Z H, Cai Y, Zhang B S and Chen K J 2015 IEEE Electron Dev. Lett. 36 448
9 Cai Y, Zhou Y G, Lau K M and Chen K J 2006 IEEE Trans. Electron Dev. 53 2207
10 Mizuno H, Kishimoto S, Maezawa K and Mitzutani T 2007 Phys. Stat. Sol. 4 2732
11 Ota K, Endo K, Okamoto Y, Ando Y and Shimawaki H 2009 Proceedings of the IEEE International Electron Devices Meeting, December 7-9, 2009, Baltimore, MD, USA, p. 7.3.1
12 Uemoto Y, Hikita M, Ueno H, Matsuo H, Ishida H, Yanagihara M, Ueda T, Tanaka T and Ueda D 2007 IEEE Trans. Electron Dev. 54 3393
13 Marcon D, Saripalli Y N and Decoutere S 2015 Proceedings of the IEEE International Electron Devices Meeting, December 7-9, 2005, Washington, DC, USA, p. 16.2.1
14 Meneghiniet M, de Santi C, Ueda T, Tanaka D, Zanoni E and Meneghesso G 2012 IEEE Electron Dev. Lett. 33 375
15 Chang T, Hsiao T, Huang C, Kuo W, Lin S, Samudra G S and Liang Y C 2015 IEEE Trans. Electron Dev. 62 339
16 Rossetto I, Meneghini M, Hilt O, Treidel E B, Santi C D, Dalcanale S, Wuerfl J, Zanoni E and Meneghesso G 2016 IEEE Trans. Electron Dev. 63 2334
17 Ma X H, Jiang Y Q, Wang X H, Lü M, Zhang H, Chen W W and Liu X Y 2014 Chin. Phys. B 23 017303
18 Meneghini M, Stocco A, Bertin M, Marcon D, Chini A, Meneghesso G and Zanoni E2012 Appl. Phys. Lett. 100 287
19 Tapajna M, Hilt O, Bahat-Treidel E, Würfl J and Kuzm\'ík J 2016 IEEE Electron Dev. Lett. 37 385
20 Tallarico A N, Stoffels S, Magnone P, Posthuma N, Sangiorgi E Decoutere S and Fiegna C 2016 IEEE Electron Dev. Lett. 38 99
21 Meneghesso G, Meneghini M, Silvestri R, Vanmeerbeek P, Moens P and Zanoni E 2016 Jpn. J. Appl. Phys. 55 01AD04
[1] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[2] Couple stress and Darcy Forchheimer hybrid nanofluid flow on a vertical plate by means of double diffusion Cattaneo-Christov analysis
Hamdi Ayed. Chin. Phys. B, 2023, 32(4): 040205.
[3] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[4] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[5] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[6] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[7] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[8] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[9] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[10] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[11] Influence of particle size on the breaking of aluminum particle shells
Tian-Yi Wang(王天一), Zheng-Qing Zhou(周正青), Jian-Ping Peng(彭剑平),Yu-Kun Gao(高玉坤), and Ying-Hua Zhang(张英华). Chin. Phys. B, 2022, 31(7): 076107.
[12] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[13] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[14] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
[15] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
No Suggested Reading articles found!