Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 057302    DOI: 10.1088/1674-1056/abd469
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT

Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃)
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  PbZr0.2Ti0.8O3 (PZT) gate insulator with the thickness of 30 nm is grown by pulsed laser deposition (PLD) in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs). The ferroelectric effect of PZT AlGaN/GaN MIS-HEMT is demonstrated. The polarization charge in PZT varies with different gate voltages. The equivalent polarization charge model (EPCM) is proposed for calculating the polarization charge and the concentration of two-dimensional electron gas (2DEG). The threshold voltage (Vth) and output current density (IDS) can also be obtained by the EPCM. The theoretical values are in good agreement with the experimental results and the model can provide a guide for the design of the PZT MIS-HEMT. The polarization charges of PZT can be modulated by different gate-voltage stresses and the Vth has a regulation range of 4.0 V. The polarization charge changes after the stress of gate voltage for several seconds. When the gate voltage is stable or changes at high frequency, the output characteristics and the current collapse of the device remain stable.
Keywords:  PZT      AlGaN/GaN      MIS-HEMT      equivalent polarization charge model (EPCM)  
Received:  11 November 2020      Revised:  10 December 2020      Accepted manuscript online:  17 December 2020
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.40.Rw (Metal-insulator-metal structures)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  73.61.Ey (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61974111, 62004150, and 61974115), the China Postdoctoral Science Foundation (Grant No. 2018M643575), and the Civil Aerospace Pre-Research Plan of China (Grant No. B0202).
Corresponding Authors:  Chong Wang, Xue-Feng Zheng     E-mail:  chongw@xidian.edu.cn;xfzheng@mail.xidian.edu.cn

Cite this article: 

Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃) Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT 2021 Chin. Phys. B 30 057302

[1] Chen C C, Hua M Y, Chen J T, Song Y, Zheng Z Y, Wei J and Chen K J 2020 IEEE Electron Dev. Lett. 41 545
[2] Shi Y J, Chen W J, Sun R Z, Liu C, Xin Y J, Xia Y, Wang F Z, Xu X R, Deng X C, Chen T S and Zhang B 2020 IEEE T. Electron. Dev. 67 2290
[3] Lee H P and Bayram C 2020 IEEE T. Electron. Dev. 67 2760
[4] Hua M Y, Yang S, Wei J, Zheng Z Y, He J B and Chen K J 2020 IEEE T. Electron. Dev. 67 217
[5] Asubar J T, Kawabata S, Tokuda H, Yamamoto A and Kuzuhara M 2020 IEEE Electron Dev. Lett. 41 693
[6] Sun Z H, Huang H L, Wang R H, Sun N, Tao P C, Ren Y S, Sun S K, Wang H Z, Li S Q, Cheng W X, Gao J and Liang H N 2020 IEEE Electron Dev. Lett. 41 135
[7] Erine C, Ma J, Santoruvo G and Matioli E 2020 IEEE Electron Dev. Lett. 41 321
[8] Yu C J, Hsu C W, Wu M C, Wu W C, Chuang C Y and Liu J Z 2020 IEEE Electron Dev. Lett. 41 673
[9] Lee C H, Yang C L, Tseng C Y, Chang J H and Horng R H 2015 IEEE T. Electron Dev. 62 2481
[10] Tan A J, Chatterjee K, Zhou J R, Kwon D, Liao Y H, Cheema S, Hu C M and Salahuddin S 2020 IEEE Electron Dev. Lett. 41 240
[11] Chen L X, Wang H, Hou B, Liu M, Shen L K, Lu X L, Ma X H and Hao Y 2019 Appl. Phys. Lett. 115 193505
[12] Chen L X, Ma X H, Zhu J J, Hou B, Song F, Zhu Q, Zhang M, Yang L and Hao Y 2018 IEEE T. Electron. Dev. 65 3149
[13] Wang H Y, Wang J Y, Li M J, Cao Q R, Yu M, He Y D and Wu W G 2018 IEEE Electron Dev. Lett. 39 1888
[14] Hou B, Ma X H, Zhu J J, Yang L, Chen W W, Mi M H, Zhu Q, Chen L X, Zhang R, Zhang M, Zhou X W and Hao Y 2018 IEEE Electron Dev. Lett. 39 397
[15] Zhu J J, Chen L X, Jiang J, Lu X L, Yang L, Hou B, Liao M, Zhou Y C, Ma X H and Hao Y 2018 IEEE Electron Dev. Lett. 39 79
[16] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J and Eastman L F 1999 J. Appl. Phys. 85 3222
[17] Zhao Y P, Wang C, Zheng X F, Ma X H, He Y L, Liu K, Li A, Peng Y, Zhang C F and Hao Y 2020 Solid State Electron. 163 107649
[18] Zhao Y P, Wang C, Zheng X F, Ma X H, Liu K, Li A, He Y L and Hao Y 2020 Chin. Phys. B 29 087304
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[3] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[4] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[5] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[6] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[7] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[8] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[9] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[10] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[11] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[12] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[13] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[14] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[15] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
No Suggested Reading articles found!