CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT |
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲)†, Xue-Feng Zheng(郑雪峰)‡, Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃) |
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract PbZr0.2Ti0.8O3 (PZT) gate insulator with the thickness of 30 nm is grown by pulsed laser deposition (PLD) in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs). The ferroelectric effect of PZT AlGaN/GaN MIS-HEMT is demonstrated. The polarization charge in PZT varies with different gate voltages. The equivalent polarization charge model (EPCM) is proposed for calculating the polarization charge and the concentration of two-dimensional electron gas (2DEG). The threshold voltage (Vth) and output current density (IDS) can also be obtained by the EPCM. The theoretical values are in good agreement with the experimental results and the model can provide a guide for the design of the PZT MIS-HEMT. The polarization charges of PZT can be modulated by different gate-voltage stresses and the Vth has a regulation range of 4.0 V. The polarization charge changes after the stress of gate voltage for several seconds. When the gate voltage is stable or changes at high frequency, the output characteristics and the current collapse of the device remain stable.
|
Received: 11 November 2020
Revised: 10 December 2020
Accepted manuscript online: 17 December 2020
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.40.Rw
|
(Metal-insulator-metal structures)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61974111, 62004150, and 61974115), the China Postdoctoral Science Foundation (Grant No. 2018M643575), and the Civil Aerospace Pre-Research Plan of China (Grant No. B0202). |
Corresponding Authors:
Chong Wang, Xue-Feng Zheng
E-mail: chongw@xidian.edu.cn;xfzheng@mail.xidian.edu.cn
|
Cite this article:
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃) Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT 2021 Chin. Phys. B 30 057302
|
[1] Chen C C, Hua M Y, Chen J T, Song Y, Zheng Z Y, Wei J and Chen K J 2020 IEEE Electron Dev. Lett. 41 545 [2] Shi Y J, Chen W J, Sun R Z, Liu C, Xin Y J, Xia Y, Wang F Z, Xu X R, Deng X C, Chen T S and Zhang B 2020 IEEE T. Electron. Dev. 67 2290 [3] Lee H P and Bayram C 2020 IEEE T. Electron. Dev. 67 2760 [4] Hua M Y, Yang S, Wei J, Zheng Z Y, He J B and Chen K J 2020 IEEE T. Electron. Dev. 67 217 [5] Asubar J T, Kawabata S, Tokuda H, Yamamoto A and Kuzuhara M 2020 IEEE Electron Dev. Lett. 41 693 [6] Sun Z H, Huang H L, Wang R H, Sun N, Tao P C, Ren Y S, Sun S K, Wang H Z, Li S Q, Cheng W X, Gao J and Liang H N 2020 IEEE Electron Dev. Lett. 41 135 [7] Erine C, Ma J, Santoruvo G and Matioli E 2020 IEEE Electron Dev. Lett. 41 321 [8] Yu C J, Hsu C W, Wu M C, Wu W C, Chuang C Y and Liu J Z 2020 IEEE Electron Dev. Lett. 41 673 [9] Lee C H, Yang C L, Tseng C Y, Chang J H and Horng R H 2015 IEEE T. Electron Dev. 62 2481 [10] Tan A J, Chatterjee K, Zhou J R, Kwon D, Liao Y H, Cheema S, Hu C M and Salahuddin S 2020 IEEE Electron Dev. Lett. 41 240 [11] Chen L X, Wang H, Hou B, Liu M, Shen L K, Lu X L, Ma X H and Hao Y 2019 Appl. Phys. Lett. 115 193505 [12] Chen L X, Ma X H, Zhu J J, Hou B, Song F, Zhu Q, Zhang M, Yang L and Hao Y 2018 IEEE T. Electron. Dev. 65 3149 [13] Wang H Y, Wang J Y, Li M J, Cao Q R, Yu M, He Y D and Wu W G 2018 IEEE Electron Dev. Lett. 39 1888 [14] Hou B, Ma X H, Zhu J J, Yang L, Chen W W, Mi M H, Zhu Q, Chen L X, Zhang R, Zhang M, Zhou X W and Hao Y 2018 IEEE Electron Dev. Lett. 39 397 [15] Zhu J J, Chen L X, Jiang J, Lu X L, Yang L, Hou B, Liao M, Zhou Y C, Ma X H and Hao Y 2018 IEEE Electron Dev. Lett. 39 79 [16] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J and Eastman L F 1999 J. Appl. Phys. 85 3222 [17] Zhao Y P, Wang C, Zheng X F, Ma X H, He Y L, Liu K, Li A, Peng Y, Zhang C F and Hao Y 2020 Solid State Electron. 163 107649 [18] Zhao Y P, Wang C, Zheng X F, Ma X H, Liu K, Li A, He Y L and Hao Y 2020 Chin. Phys. B 29 087304 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|