Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117301    DOI: 10.1088/1674-1056/ac81a7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress

Dongyan Zhao(赵东艳)1, Yubo Wang(王于波)1, Yanning Chen(陈燕宁)1,2, Jin Shao(邵瑾)1, Zhen Fu(付振)2, Fang Liu(刘芳)2, Yanrong Cao(曹艳荣)3,4,†, Faqiang Zhao(赵法强)1, Mingchen Zhong(钟明琛)2, Yasong Zhang(张亚松)3,‡, Maodan Ma(马毛旦)3, Hanghang Lv(吕航航)3, Zhiheng Wang(王志恒)3, Ling Lv(吕玲)4, Xuefeng Zheng(郑雪峰)4, and Xiaohua Ma(马晓华)4
1 Beijing Engineering Research Center of High-reliability IC with Power Industrial Grade, Beijing Smart-Chip Microelectronics Technology Co., Ltd., Beijing 100192, China;
2 Beijing Chip Identification Technology Co., Ltd., Beijing 102200, China;
3 School of Electro-Mechanical Engineering, Xidian University, Xi'an 710071, China;
4 Key Lab of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China
Abstract  Influences of off-state overdrive stress on the fluorine-plasma treated AlGaN/GaN high-electronic mobility transistors (HEMTs) are experimentally investigated. It is observed that the reverse leakage current between the gate and source decreases after the off-state stress, whereas the current between the gate and drain increases. By analyzing those changes of the reverse currents based on the Frenkel-Poole model, we realize that the ionization of fluorine ions occurs during the off-state stress. Furthermore, threshold voltage degradation is also observed after the off-state stress, but the degradations of AlGaN/GaN HEMTs treated with different F-plasma RF powers are different. By comparing the differences between those devices, we find that the F-ions incorporated in the GaN buffer layer play an important role in averting degradation. Lastly, suggestions to obtain a more stable fluorine-plasma treated AlGaN/GaN HEMT are put forwarded.
Keywords:  AlGaN/GaN HEMT      fluorine plasma treatment      off-state overdrive stress  
Received:  06 May 2022      Revised:  29 June 2022      Accepted manuscript online:  18 July 2022
PACS:  73.61.Ey (III-V semiconductors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: Project supported by the Laboratory Open Fund of Beijing Smart-Chip Microelectronics Technology Co., Ltd and the National Natural Science Foundation of China (Grant Nos. 11690042 and 12035019), the National Major Scientific Research Instrument Projects (Grant No. 61727804), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2022-JM-386).
Corresponding Authors:  Yanrong Cao, Yasong Zhang     E-mail:  yrcao@mail.xidian.edu.cn;568695351@qq.com

Cite this article: 

Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华) Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress 2022 Chin. Phys. B 31 117301

[1] Buniatyan V V and Aroutiounian V M 2007 J. Phys. D: Appl. Phys. 40 6355
[2] Lian G 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), September 25-27, 2020, Hefei, China, pp. 149-152
[3] Perkins S, Arvanitopoulos A, Gyftakis K N and Lophitis N 2018 IEEE 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), May 16-18, 2018, Xi'an, China, pp. 174-178
[4] Cai Y, Zhou Y, Chen K J and Lau K M 2005 IEEE Electron Device Lett. 26 435
[5] Wang Y, Hu S D, Guo J W, Wu H, Liu T and Jiang J 2022 IEEE J. Electron Devices Soc. 10 197
[6] Albahrani S A, Heuken L, Schwantuschke D, Gneiting T, Burghartz J N and Khandelwal S 2020 IEEE Trans. Electron Devices 67 455
[7] Yadav Y K, Upadhyay B B, Meer M, Bhardwaj N, Ganguly S and Saha D 2019 IEEE Electron Device Lett. 40 67
[8] Kobayashi K W and Kumar V 2021 IEEE Microw Wirel Compon. Lett. 31 885
[9] Cai Y, Zhou Y, Lau K M and Chen K J 2006 IEEE Trans. Electron Devices 53 2207
[10] Wu C H, Han P C, Luc Q H, Hsu C Y, Hsieh T E, Wang H C, Lin Y K, Chang P C, Lin Y C and Chang E Y 2018 IEEE J. Electron Devices Soc. 6 893
[11] Chen K J, Yuan L, Wang M J, Chen H, Huang S, Zhou Q, Zhou C, Li B K and Wang J N 2011 IEEE International Electron Devices Meeting, December 5-7, 2011, Washington, DC, USA, pp. 19.4.1-19.4.4
[12] Mao L F 2019 ECS J. Solid State Sci. Technol. 8 472
[13] Yong C, Zhou Y, Chen K J and Lau K M 2005 IEEE Electron Device Lett. 26 435
[14] Wang M J, Yuan L, Chen K J, Xu F J and Shen B 2009 J. Appl. Phys. 105 083519
[15] Ma C, Chen H, Zhou C, Huang S, Yuan L, Roberts J and Chen K J 2011 J. Appl. Phys. 110 114514
[16] Yi C W, Wang R N, Huang W, Tang W C W, Lau K M and Chen K J 2007 IEEE International Electron Devices Meeting, December 10-12, 2007, Washington, DC, USA, pp. 389-392
[17] Albany F, Curutchet A, Labat N, Lecourt F, Walasiak E, Maher H, Cordier Y, Defrance N and Malbert N 2021 IEEE 15th European Microwave Integrated Circuits Conference (EuMIC), January 10-15, 2021, Utrecht, Netherlands, pp. 237-240
[18] Yang L, Hou B, Mi M H, Zhu J J, Zhang M, Zhu Q, He Y L, Chen L X, Zhou X W, Ma X H and Hao Y 2017 IEEE International Reliability Physics Symposium (IRPS), April 2-6, 2017, Monterey, CA, USA, pp. WB-2.1-WB-2.4
[19] Ma C Y, Chen H W, Zhou C H, Huang S, Yuan L, Roberts J, Kevin and Chen J 2011 J. Appl. Phys 110 114514
[20] Yang L, Zhou X W, Ma X H, Lv L, Cao Y R, Zhang J C and Hao Y 2017 Chin. Phys. B 26 017304
[21] Sun W W, Zheng X F, Fan S, Wang C, Du M, Zhang K and Chen W W 2015 Chin. Phys. B 24 017303
[22] Quan S, Hao Y, Ma X H, Xie Y B and Ma J G 2009 J. Semiconduct. 30 124002
[23] Ha W J, Chhajed S, Oh S J, Hwang S, Kim J K, Lee J H and Kim K S 2012 Appl. Phys. Lett. 100 132104
[24] Yeargan J R and Taylor H L 1968 J. Appl. Phys. 39 5600
[25] Ren J, Mou W J, Zhao L, Yan D W, Yu Z G, Yang G F, Xiao S Q and Gu X F 2017 IEEE Trans. Electron Devices 64 407
[26] Zheng X F, Chen A S, Zhang H, Wang X H, Wang Y Z, Hua N, Chen K, Wang M S, Zhang Q Y, Ma X H and Hao Y 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), July 20-23, 2020, Singapore, pp. 1-4
[27] Zhang Y S, Cao Y R, Li P, Dai F, Zhu Q, Lv L, Ma X H and Hao Y 2016 IEEE 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), October 25-28, 2016, Hangzhou, China, pp. 1035-1037
[28] Joh J and Alamo J J A 2006 IEEE International Electron Devices Meeting, December 11-13, 2006, San Francisco, CA, USA, pp 1-4
[29] Ren J, Yan D W and Gu X F 2013 Acta Phys. Sin. 62 157202 (in Chinese)
[30] Ma X H, Yu H Y, Quan S, Yang L Y, Pan C Y, Yang L, Wang H, Zhang J C and Hao Y 2011 Chin. Phys. B 20 027303
[1] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[2] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[3] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[4] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
[5] Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer
Tie-Cheng Han(韩铁成), Hong-Dong Zhao(赵红东), Xiao-Can Peng(彭晓灿). Chin. Phys. B, 2019, 28(4): 047302.
[6] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[7] Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs
Jianfei Li(李建飞), Yuanjie Lv(吕元杰), Changfu Li(李长富), Ziwu Ji(冀子武), Zhiyong Pang(庞智勇), Xiangang Xu(徐现刚), Mingsheng Xu(徐明升). Chin. Phys. B, 2017, 26(9): 098504.
[8] Low power fluorine plasma effects on electrical reliability of AlGaN/GaN high electron mobility transistor
Ling Yang(杨凌), Xiao-Wei Zhou(周小伟), Xiao-Hua Ma(马晓华), Ling Lv(吕玲), Yan-Rong Cao(曹艳荣), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(1): 017304.
[9] Groove-type channel enhancement-mode AlGaN/GaN MIS HEMT with combined polar and nonpolar AlGaN/GaN heterostructures
Xiao-Ling Duan(段小玲), Jin-Cheng Zhang(张进成), Ming Xiao(肖明), Yi Zhao(赵一), Jing Ning(宁静), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(8): 087304.
[10] Analysis of the modulation mechanisms of the electric field and breakdown performance in AlGaN/GaN HEMT with a T-shaped field-plate
Wei Mao(毛维), Ju-Sheng Fan(范举胜), Ming Du(杜鸣), Jin-Feng Zhang(张金风), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(12): 127305.
[11] Reverse blocking characteristics and mechanisms in Schottky-drainAlGaN/GaN HEMT with a drain field plate and floating field plates
Wei Mao(毛维), Wei-Bo She(佘伟波), Cui Yang(杨翠), Jin-Feng Zhang(张金风), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(1): 017303.
[12] Transient simulation and analysis of current collapse due to trapping effects in AlGaN/GaN high-electron-mobility transistor
Zhou Xing-Ye (周幸叶), Feng Zhi-Hong (冯志红), Wang Yuan-Gang (王元刚), Gu Guo-Dong (顾国栋), Song Xu-Bo (宋旭波), Cai Shu-Jun (蔡树军). Chin. Phys. B, 2015, 24(4): 048503.
[13] Breakdown mechanisms in AlGaN/GaN high electron mobility transistors with different GaN channel thickness values
Ma Xiao-Hua (马晓华), Zhang Ya-Man (张亚嫚), Wang Xin-Hua (王鑫华), Yuan Ting-Ting (袁婷婷), Pang Lei (庞磊), Chen Wei-Wei (陈伟伟), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2015, 24(2): 027101.
[14] Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation
Zheng Xue-Feng (郑雪峰), Fan Shuang (范爽), Chen Yong-He (陈永和), Kang Di (康迪), Zhang Jian-Kun (张建坤), Wang Chong (王冲), Mo Jiang-Hui (默江辉), Li Liang (李亮), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2015, 24(2): 027302.
[15] AlGaN/GaN high electron mobility transistorwith Al2O3+BCB passivation
Zhang Sheng (张昇), Wei Ke (魏珂), Yu Le (余乐), Liu Guo-Guo (刘果果), Huang Sen (黄森), Wang Xin-Hua (王鑫华), Pang Lei (庞磊), Zheng Ying-Kui (郑英奎), Li Yan-Kui (李艳奎), Ma Xiao-Hua (马晓华), Sun Bing (孙兵), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2015, 24(11): 117307.
No Suggested Reading articles found!