Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057202    DOI: 10.1088/1674-1056/ac46c3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices

Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑)
School of Physics, Northwest University, Xi'an 710127, China
Abstract  Interfacial charge recombination is a main issue causing the efficiency loss of the perovskite solar cells (PSCs). Here, ferroelectric Ba0.75Sr0.25TiO3 (BST) is introduced as a polarization tunable layer to promote the interfacial charge transfer of the PSCs. The coexistence of ferroelectric polarization and charge carriers in BST is confirmed by density functional theory (DFT) calculations. Experimental characterization demonstrates the polarization reversal and the existence of domain in BST film. The BST film conductivity is tested as 2.98×10-4 S/cm, which is comparable to the TiO2 being used as the electron transporting layer (ETL) in PSCs. The calculations results prove that BST can be introduced into the PSCs and the interfacial charge transfer can be tuned by ferroelectric polarization. Thus, we fabricated the BST-based PSCs with a champion power conversion efficiency (PCE) of 19.05% after poling.
Keywords:  ferroelectric polarization      charge transfer      density-functional theory      perovskite solar cell  
Received:  14 November 2021      Revised:  18 December 2021      Accepted manuscript online: 
PACS:  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  34.70.+e (Charge transfer)  
  31.15.E-  
  88.40.hj (Efficiency and performance of solar cells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.51972266,51672214,and 11904286) and the Natural Science Basic Research Program of Shaanxi Province,China (Grant No.2022JZ-01).
Corresponding Authors:  Ming-Zi Wang,E-mail:mzwang@nwu.edu.cn;Hong-Jian Feng,E-mail:hjfeng@nwu.edu.cn     E-mail:  mzwang@nwu.edu.cn;hjfeng@nwu.edu.cn
About author:  2021-12-29

Cite this article: 

Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑) Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices 2022 Chin. Phys. B 31 057202

[1] Lines M E and Glass A M 1977 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Oxford University Press) pp. 102-103
[2] Wurfel P and Batra I P 1973 Phys. Rev. B 8 5126
[3] Wang Y, Liu X H, Burton J D, Jaswal S S and Tsymbal E Y 2012 Phys. Rev. Lett. 109 247601
[4] Sharma P, Xiang F X, Shao D F, Zhang D W, Tsymbal E Y, Hamilton A R and Seidel J 2019 Sci. Adv. 5 eaax5080
[5] Liu X H, Tsymbal E Y and Rabe K M 2018 Phys. Rev. B 97 094107
[6] Zhang Y, Lu H D, Xie L, Yan X X, Paudel T R, Kim J, Cheng X X, Wang H, Heikes C, Li L Z, Xu M J, Schlom D G, Chen L Q, Wu R Q, Tsymbal E Y, Gruverman A and Pan X Q 2018 Nat. Nanotechnol. 13 1132
[7] Chen G Z, Jin L, Min T and Xiao J 2021 Chin. Phys. Lett. 38 087701
[8] Leo N, Carolus V, White J S, Kenzelmann M, Hudl M, Toédano P, Honda T, Kimura T, Ivanov S A, Weil M, Lottermoser Th, Meier D and Fiebig M 2018 Nature 560 466
[9] Nahas Y, Prokhorenko S, Fischer J, Xu B, Carrétéro C, Prosandeev S, Bibes M, Fusil S, Dkhil B, Garcia V and Bellaiche L 2020 Nature 577 47
[10] Nelson C T, Gao P, Jokisaari J R, Heikes C, Adamo C, Melville A, Baek S H, Folkman C M, Winchester B, Gu Y J, Liu Y M, Zhang K, Wang E, Li J Y, Chen L Q, Eom C B, Schlom D G and Pan X Q 2011 Science 334 968
[11] You L, Zheng F, Fang L, Zhou Y, Tan L Z, Zhang Z Y, Ma G H, Schmidt D, Rusydi A, Wang L, Chang L, Rappe A M and Wang J L 2018 Sci. Adv. 4 eaat3438
[12] Sharma P, Zhang Q, Sando D, Lei C H, Liu Y Y, Li J Y, Nagarajan V and Seidel J 2017 Sci. Adv. 3 e1700512
[13] Li Z W, Wang Y J, Tian G, Li P L, Zhao L N, Zhang F Y, Yao J X, Fan H, Song X, Chen D Y, Fan Z, Qin M H, Zeng M, Zhang Z, Lu X B, Hu S J, Lei C H, Zhu Q F, Li J Y, Gao X S and Liu J M 2017 Sci. Adv. 3 e1700919
[14] Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin S V, Gemming S, Wang F, Catalan G, Scott J F, Spaldin N A, Orenstein J and Ramesh R 2009 Nat. Mater. 8 229
[15] Scott J F 2007 Science 315 954
[16] Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T and Streiffer S 2006 J. Appl. Phys. 100 051606
[17] Martin L W and Rappe A M 2016 Nat. Rev. Mater. 2 16087
[18] Zhao Y P, Wang C, Zheng X F, Ma X H, Li A, Liu K, He Y L, Lu X L and Hao Y 2021 Chin. Phys. B 30 057302
[19] Li Z Z, Tang R S, Wang X F and Zheng F G 2014 Chin. Phys. Lett. 31 047701
[20] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[21] Li M, Yang Y G, Wang Z K, Kang T, Wang Q, Turren-Cruz S H, Gao X Y, Hsu C S, Liao L S and Abate A 2018 Adv. Mater. 30 1800258
[22] Zhang Z Y, Xu L and Qi J J 2021 Chin. Phys. B 30 038801
[23] Liu Y H, Wang W, Xiao F, Xiong L B and Ming X 2021 Chin. Phys. B 30 108102
[24] Cheng J G, Meng X J, Li B, Tang J, Guo S L, Chu J H, Wang M, Wang H and Wang Z 1999 Appl. Phys. Lett. 75 2132
[25] Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S and Garner F A 2013 Nucl. Instrum. Methods Phys. Res. B 310 75
[26] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter. 21 395502
[27] Walker B, Saitta A M, Gebauer R and Baroni S 2006 Phys. Rev. Lett. 96 113001
[28] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L and Burke K 2008 Phys. Rev. Lett. 100 136406
[29] Garrity K F, Bennett J W, Rabe K M and Vanderbilt D 2014 Comput. Mater. Sci. 81 446
[30] Wojciechowski K, Saliba M, Leijtens T, Abate A and Snaith H J 2014 Energy Environ. Sci. 7 1142
[31] Sæterli R, Rørvik P M, You C C, Holmestad R, Tybell T, Grande T, van Helvoort A T J and Einarsrud M A 2010 J. Appl. Phys. 108 124320
[32] Fu M S, Ni L, Liu X Q, Chen X M and Zeng Y W 2012 J. Am. Ceram. Soc. 95 2979
[1] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[2] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[3] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[4] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[5] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[6] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[7] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[8] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[9] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[10] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[11] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[12] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[13] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[14] Understanding the synergistic effect of mixed solvent annealing on perovskite film formation
Kun Qian(钱昆), Yu Li(李渝), Jingnan Song(宋静楠), Jazib Ali, Ming Zhang(张明), Lei Zhu(朱磊), Hong Ding(丁虹), Junzhe Zhan(詹俊哲), and Wei Feng(冯威). Chin. Phys. B, 2021, 30(6): 068103.
[15] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
No Suggested Reading articles found!