CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications |
Pengfei Wang(王鹏飞)1, Minhan Mi(宓珉瀚)1,3,†, Meng Zhang(张濛)1, Jiejie Zhu(祝杰杰)1, Yuwei Zhou(周雨威)2, Jielong Liu(刘捷龙)2, Sijia Liu(刘思佳)2, Ling Yang(杨凌)1, Bin Hou(侯斌)1, Xiaohua Ma(马晓华)1, and Yue Hao(郝跃)1 |
1 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China; 2 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China; 3 Xidian University Guangzhou Institute of Technology, Guangzhou 510555, China |
|
|
Abstract We demonstrated an AlGaN/GaN high electron mobility transistor (HEMT) namely double-Vth coupling HEMT (DVC-HEMT) fabricated by connecting different threshold voltage (Vth) values including the slant recess element and planar element in parallel along the gate width with N2O plasma treatment on the gate region. The comparative studies of DVC-HEMT and Fin-like HEMT fabricated on the same wafer show significantly improved linearity of transconductance (Gm) and radio frequency (RF) output signal characteristics in DVC-HEMT. The fabricated device shows the transconductance plateau larger than 7 V, which yields a flattened fT/fmax-gate bias dependence. At the operating frequency of 30 GHz, the peak power-added efficiency (PAE) of 41% accompanied by the power density (Pout) of 5.3 W/mm. Furthermore, the proposed architecture also features an exceptional linearity performance with 1-dB compression point (P1 dB) of 28 dBm, whereas that of the Fin-like HEMT is 25.2 dBm. The device demonstrated in this article has great potential to be a new paradigm for millimeter-wave application where high linearity is essential.
|
Received: 13 July 2021
Revised: 23 September 2021
Accepted manuscript online: 29 September 2021
|
PACS:
|
71.55.Eq
|
(III-V semiconductors)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB1804902), the Fundamental Research Funds for the Central Universities, the Innovation Fund of Xidian University, the National Natural Science Foundation of China (Grant No. 61904135), the China Postdoctoral Science Foundation (Grant Nos. 2018M640957 and BX20200262), and the Research and Development Plan of Key Fields in Guangzhou (Grant No. 202103020002). |
Corresponding Authors:
Minhan Mi
E-mail: miminhan@qq.com
|
Cite this article:
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃) High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications 2022 Chin. Phys. B 31 027103
|
[1] Sohel S H, Rahman M W, Xie X, Beam E, Cui Y J, Kruzich M, Xue H, Razzak T, Bajaj S, Cao Y, Lu W and Rajan S 2020 IEEE Electron Dev. Lett. 41 19 [2] Raab F H, Asbeck P, Cripps S, Kenington P B, Popovic Z B, Pothecary N, Sevic J F and Sokal N O 2002 IEEE Trans. Microw. Theory Techn. 50 814 [3] Nagy W, Brown J, Borges R and Singhal S 2003 IEEE Trans. Microw. Theory Techn. 51 660 [4] Ancona M G, Calame J P, Meyer D J, Rajan S and Downey B P 2019 IEEE Trans. Electron Dev. 66 2151 [5] Joglekar S, Radhakrishna U, Piedra D, Antoniadis D and Palacios T 2017 IEDM Tech. Dig. 25.3.1-25.3.4 [6] Lee D S, Liu Z H and Palacios T 2014 Jpn. J. Appl. Phys. 53 100212 [7] Choi P, Radhakrishna U, Boon C C, Peh L S and Antoniadis D 2017 IEEE Microw. Wireless Compon. Lett. 27 927 [8] Bagnall K R, Saadat O I, Joglekar S, Palacios T and Wang E N 2017 IEEE Trans. Electron Dev. 64 2121 [9] Ahsan, S A, Ghosh S, Sharma K, Dasgupta A, Khandelwal S and Chauhan Y S 2016 IEEE Trans. Electron Dev. 63 565 [10] Kobayashi K W 2012 IEEE J. Solid-State Circuits. 47 2316 [11] Palacios T, Rajan S, Chakraborty S, Heikman S, Keller S, DenBaars S P and Mishra U K 2005 IEEE Trans. Electron Dev. 52 2117 [12] Xing W, Liu Z H, Qiu H, Ng G I and Palacios T 2017 IEEE Electron Dev. Lett. 38 619 [13] Khurgin J B, Bajaj S and Rajan S 2016 Appl. Phys. Exp. 9 094101 [14] Bajaj S, Yang Z C, Akyol F, Park P S, Zhang Y W, Price A L, Krishnamoorthy S, Meyer D J and Rajan S 2017 IEEE Trans. Electron Dev. 64 3114 [15] Lee D S, Wang H, Hsu A, Azize M, Laboutin O, Cao Y, Johnson J W, Beam E, Ketterson A, Schuette M L, Saunier P and Palacios T 2013 IEEE Electron Dev. Lett. 34 969 [16] Palacios T, Chini A, Buttari D, Heikman S, Chakraborty A, Keller S, DenBaars S P and Mishra U K 2006 IEEE Trans. Electron Dev. 53 562 [17] Gao T, Xu R M, Kong Y C, Zhou J J, Kong C, Dong X and Chen T S 2015 Appl. Phys. Lett. 106 243501 [18] Zhang Y H, Zubair A, Liu Z H, Xiao M, Perozek J, Ma Y W and Palacios T 2021 Semicond. Sci. Technol. 36 054001 [19] Im K S, Won C H, Jo Y W, Lee J H, Bawedin M, Cristoloveanu S and Lee J H 2013 IEEE Trans. Electron Dev. 60 3012 [20] Choi W, Chen R J, Levy C, Tanaka A, Liu R, Balasubramanian V, Asbeck P M and Dayeh S A 2020 Nano Lett. 20 2812 [21] Sohel S H, Rahman M W, Xie A, Beam E, Cui Y J, Kruzich M, Xue H, Razzak T, Bajaj S, Cao Y, Lu W and Rajan S 2020 IEEE Electron Dev. Lett. 41 19 [22] Wang P F, Ma X H, Mi M H, Zhang M, Zhu J J, Zhou Y W, Wu S, Liu J L, Yang L, Hou B and Hao Y 2021 IEEE Trans. Electron Dev. 68 1563 [23] Hu X, Koudymov A, Simin G, Yang, J, Khan M A, Tarakji A, Shur M S and Gaska R 2001 Appl. Phys. Lett. 79 2832 [24] Mi M H, Ma X H, Yang L, Lu Y, Hou B, Zhu J J, Zhang M, Zhang H S, Zhu Q, Yang L A and Hao Y 2017 IEEE Trans. Electron Dev. 64 4875 [25] Chu R M, Suh C S, Wong M H, Fichtenbaum N, Brown D, Carthy L M, Keller S, Wu F, Speck J S and Mishra U K 2007 IEEE Electron Dev. Lett. 28 781 [26] Chu R M, Shen L, Fichtenbaum N, Brown D, Keller S and Mishra U K 2008 IEEE Electron Dev. Lett. 29 297 [27] Kim K W, Jung S D, Kim D S, Kang H S, Im K S, Oh J J, Ha J B, Shin J K and Lee J H 2011 IEEE Electron Dev. Lett. 32 1376 [28] Andreson T J, Tadjer M J, Mastro M A, Hite J K, Hobart K D, Eddy C R and Kub F J 2010 J. Electron. Mater. 39 478 [29] Simin G, Koudymov A, Fatima H, Zhang J P, Yang J W, Khan M A, Hu X, Tarakji A, Gaska R and Shur M S 2002 IEEE Electron Dev. Lett. 23 458 [30] Tarakji A, Fatima H, Hu X, Zhang J P, Simin G, Khan M A, Shur M S and Gaska R 2003 IEEE Electron Dev. Lett. 24 369 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|