Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027103    DOI: 10.1088/1674-1056/ac2b21

High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications

Pengfei Wang(王鹏飞)1, Minhan Mi(宓珉瀚)1,3,†, Meng Zhang(张濛)1, Jiejie Zhu(祝杰杰)1, Yuwei Zhou(周雨威)2, Jielong Liu(刘捷龙)2, Sijia Liu(刘思佳)2, Ling Yang(杨凌)1, Bin Hou(侯斌)1, Xiaohua Ma(马晓华)1, and Yue Hao(郝跃)1
1 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China;
3 Xidian University Guangzhou Institute of Technology, Guangzhou 510555, China
Abstract  We demonstrated an AlGaN/GaN high electron mobility transistor (HEMT) namely double-Vth coupling HEMT (DVC-HEMT) fabricated by connecting different threshold voltage (Vth) values including the slant recess element and planar element in parallel along the gate width with N2O plasma treatment on the gate region. The comparative studies of DVC-HEMT and Fin-like HEMT fabricated on the same wafer show significantly improved linearity of transconductance (Gm) and radio frequency (RF) output signal characteristics in DVC-HEMT. The fabricated device shows the transconductance plateau larger than 7 V, which yields a flattened fT/fmax-gate bias dependence. At the operating frequency of 30 GHz, the peak power-added efficiency (PAE) of 41% accompanied by the power density (Pout) of 5.3 W/mm. Furthermore, the proposed architecture also features an exceptional linearity performance with 1-dB compression point (P1 dB) of 28 dBm, whereas that of the Fin-like HEMT is 25.2 dBm. The device demonstrated in this article has great potential to be a new paradigm for millimeter-wave application where high linearity is essential.
Keywords:  AlGaN/GaN      linearity      1-dB compression point      millimeter-wave application  
Received:  13 July 2021      Revised:  23 September 2021      Accepted manuscript online:  29 September 2021
PACS:  71.55.Eq (III-V semiconductors)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB1804902), the Fundamental Research Funds for the Central Universities, the Innovation Fund of Xidian University, the National Natural Science Foundation of China (Grant No. 61904135), the China Postdoctoral Science Foundation (Grant Nos. 2018M640957 and BX20200262), and the Research and Development Plan of Key Fields in Guangzhou (Grant No. 202103020002).
Corresponding Authors:  Minhan Mi     E-mail:

Cite this article: 

Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃) High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications 2022 Chin. Phys. B 31 027103

[1] Sohel S H, Rahman M W, Xie X, Beam E, Cui Y J, Kruzich M, Xue H, Razzak T, Bajaj S, Cao Y, Lu W and Rajan S 2020 IEEE Electron Dev. Lett. 41 19
[2] Raab F H, Asbeck P, Cripps S, Kenington P B, Popovic Z B, Pothecary N, Sevic J F and Sokal N O 2002 IEEE Trans. Microw. Theory Techn. 50 814
[3] Nagy W, Brown J, Borges R and Singhal S 2003 IEEE Trans. Microw. Theory Techn. 51 660
[4] Ancona M G, Calame J P, Meyer D J, Rajan S and Downey B P 2019 IEEE Trans. Electron Dev. 66 2151
[5] Joglekar S, Radhakrishna U, Piedra D, Antoniadis D and Palacios T 2017 IEDM Tech. Dig. 25.3.1-25.3.4
[6] Lee D S, Liu Z H and Palacios T 2014 Jpn. J. Appl. Phys. 53 100212
[7] Choi P, Radhakrishna U, Boon C C, Peh L S and Antoniadis D 2017 IEEE Microw. Wireless Compon. Lett. 27 927
[8] Bagnall K R, Saadat O I, Joglekar S, Palacios T and Wang E N 2017 IEEE Trans. Electron Dev. 64 2121
[9] Ahsan, S A, Ghosh S, Sharma K, Dasgupta A, Khandelwal S and Chauhan Y S 2016 IEEE Trans. Electron Dev. 63 565
[10] Kobayashi K W 2012 IEEE J. Solid-State Circuits. 47 2316
[11] Palacios T, Rajan S, Chakraborty S, Heikman S, Keller S, DenBaars S P and Mishra U K 2005 IEEE Trans. Electron Dev. 52 2117
[12] Xing W, Liu Z H, Qiu H, Ng G I and Palacios T 2017 IEEE Electron Dev. Lett. 38 619
[13] Khurgin J B, Bajaj S and Rajan S 2016 Appl. Phys. Exp. 9 094101
[14] Bajaj S, Yang Z C, Akyol F, Park P S, Zhang Y W, Price A L, Krishnamoorthy S, Meyer D J and Rajan S 2017 IEEE Trans. Electron Dev. 64 3114
[15] Lee D S, Wang H, Hsu A, Azize M, Laboutin O, Cao Y, Johnson J W, Beam E, Ketterson A, Schuette M L, Saunier P and Palacios T 2013 IEEE Electron Dev. Lett. 34 969
[16] Palacios T, Chini A, Buttari D, Heikman S, Chakraborty A, Keller S, DenBaars S P and Mishra U K 2006 IEEE Trans. Electron Dev. 53 562
[17] Gao T, Xu R M, Kong Y C, Zhou J J, Kong C, Dong X and Chen T S 2015 Appl. Phys. Lett. 106 243501
[18] Zhang Y H, Zubair A, Liu Z H, Xiao M, Perozek J, Ma Y W and Palacios T 2021 Semicond. Sci. Technol. 36 054001
[19] Im K S, Won C H, Jo Y W, Lee J H, Bawedin M, Cristoloveanu S and Lee J H 2013 IEEE Trans. Electron Dev. 60 3012
[20] Choi W, Chen R J, Levy C, Tanaka A, Liu R, Balasubramanian V, Asbeck P M and Dayeh S A 2020 Nano Lett. 20 2812
[21] Sohel S H, Rahman M W, Xie A, Beam E, Cui Y J, Kruzich M, Xue H, Razzak T, Bajaj S, Cao Y, Lu W and Rajan S 2020 IEEE Electron Dev. Lett. 41 19
[22] Wang P F, Ma X H, Mi M H, Zhang M, Zhu J J, Zhou Y W, Wu S, Liu J L, Yang L, Hou B and Hao Y 2021 IEEE Trans. Electron Dev. 68 1563
[23] Hu X, Koudymov A, Simin G, Yang, J, Khan M A, Tarakji A, Shur M S and Gaska R 2001 Appl. Phys. Lett. 79 2832
[24] Mi M H, Ma X H, Yang L, Lu Y, Hou B, Zhu J J, Zhang M, Zhang H S, Zhu Q, Yang L A and Hao Y 2017 IEEE Trans. Electron Dev. 64 4875
[25] Chu R M, Suh C S, Wong M H, Fichtenbaum N, Brown D, Carthy L M, Keller S, Wu F, Speck J S and Mishra U K 2007 IEEE Electron Dev. Lett. 28 781
[26] Chu R M, Shen L, Fichtenbaum N, Brown D, Keller S and Mishra U K 2008 IEEE Electron Dev. Lett. 29 297
[27] Kim K W, Jung S D, Kim D S, Kang H S, Im K S, Oh J J, Ha J B, Shin J K and Lee J H 2011 IEEE Electron Dev. Lett. 32 1376
[28] Andreson T J, Tadjer M J, Mastro M A, Hite J K, Hobart K D, Eddy C R and Kub F J 2010 J. Electron. Mater. 39 478
[29] Simin G, Koudymov A, Fatima H, Zhang J P, Yang J W, Khan M A, Hu X, Tarakji A, Gaska R and Shur M S 2002 IEEE Electron Dev. Lett. 23 458
[30] Tarakji A, Fatima H, Hu X, Zhang J P, Simin G, Khan M A, Shur M S and Gaska R 2003 IEEE Electron Dev. Lett. 24 369
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[3] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[4] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[5] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[6] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[7] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[8] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[9] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[10] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[11] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[12] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[13] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[14] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
[15] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
No Suggested Reading articles found!