Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 108802    DOI: 10.1088/1674-1056/ac6b27

Development of ZnTe film with high copper doping efficiency for solar cells

Xin-Lu Lin(林新璐)1,2, Wen-Xiong Zhao(赵文雄)1, Qiu-Chen Wu(吴秋晨)1,2, Yu-Feng Zhang(张玉峰)1, Hasitha Mahabaduge3, and Xiang-Xin Liu(刘向鑫)1,2,4,†
1. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. Georgia College and State University, Milledgeville, GA 31061, USA;
4. Institute of Qilu Zhongke Electrical Advanced Electromagnetic Drive Technology, Jinan 250101, China
Abstract  Since a hole barrier was formed in back contact due to mismatch of work function, the back contact material for CdTe cell has been a significant research direction. The ZnTe:Cu is an ideal back contact material, which reduces the valence band discontinuity and can be used as the electron back reflection layer to inhibit interface recombination. The conductivity of ZnTe:Cu film is improved by applying RF-coupled DC sputtering and post-deposition heat treatment. The doping efficiency is computed as the ratio of free hole density and copper concentration, which can be correlated with performance for CdTe-based solar cell. The higher doping efficiency means that more copper atoms substitute for Zn sites in ZnTe lattices and less mobilized copper atoms remain which can enter into the CdTe absorber layer. Copper atoms are suspected as dominant element for CdTe-based cell degradation. After optimizing the ZnTe:Cu films, a systematic study is carried out to incorporate ZnTe:Cu film into CdTe solar cell. The EQE spectrum is kept relatively stable over the long wavelength range without decreasing. It is proved that the conduction band barrier of device with ZnTe:Cu/Au contact material has an effect on the EQE response, which works as free electron barrier and reduces the recombination rate of free carrier. According to the dark JV data or the light JV data in the linear region, the current indicates that the intercept gives the diode reverse saturation current. The results of ideality factor indicate that the dominant recombination occurs in the space charge region. In addition, the space charge density and depletion width of solar cell can be estimated by CV profiling.
Keywords:  solar cell      radio frequency sputtering      doping efficiency      post-deposition heat treatment  
Received:  01 March 2022      Revised:  21 April 2022      Accepted manuscript online: 
PACS: (Thin film III-V and II-VI based solar cells)  
  81.15.Cd (Deposition by sputtering)  
  88.40.hj (Efficiency and performance of solar cells)  
  81.20.-n (Methods of materials synthesis and materials processing)  
Fund: Project supported by the Research Foundation of Institute of Electrical Engineering, Chinese Academy of Sciences, (Grant No. Y710411CSB), the Lujiaxi International Team Project of Chinese Academy of Sciences (Grant No. GJTD- 2018-05), the Chinese Academy of Sciences President’s International Fellowship Initiative (Grant No. 2020VEC0008), and the Fund from the Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke.
Corresponding Authors:  Xiang-Xin Liu     E-mail:

Cite this article: 

Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫) Development of ZnTe film with high copper doping efficiency for solar cells 2022 Chin. Phys. B 31 108802

[1] Romeo A and Artegiani E 2021 Energies 14 1684
[2] Hafiz Tariq Masood Z M, Muhammad H, Wang D M and Wang D L 2017 Chin. Phys. B 26 67503
[3] Yang J X and Wei S H 2019 Chin. Phys. B 28 86106
[4] Hack J, Lee C, Grover S and Xiong G 2021 48th IEEE Photovoltaic Specialists Conference (PVSC), June 20—25, 2021, Fort Lauderdale, USA, pp. 1880—1882
[5] Wu L, Feng L, Li W, Zhang J, Li B, Lei Z, Cai W, Cai Y and Zheng J 2007 Sci. China- Ser. E-Technol. Sci. 50 199
[6] Wang J, Wang Y Q, Liu C, Sun M L, Wang C, Yin G C, Jia F C, Mu Y N, Liu X L and Yang H B 2020 Chin. Phys. B 29 098802
[7] Bosio A, Ciprian R, Lamperti A, Rago I, Ressel B, Rosa G, Stupar M and Weschke E 2018 Solar Energy 176 186
[8] Qin K, Ji H, Huang J, Tang K, Shen Y, Zhang X, Cao M, Zhang J, Shen Y and Wang L 2017 Surface & Coatings Technology 320 366
[9] Shen K, Wang X Q, Zhang Y, Zhu H B, Chen Z C, Huang C Z and Mai Y H 2020 Solar Energy 201 55
[10] Li J J, Diercks D R, Ohno T R, Warren C W, Lonergan M C, Beach J D and Wolden C A 2015 Sol. Energy Mater. Sol. Cells 133 208
[11] Wolden C A, Abbas A, Li J J, Diercks D R, Meysing D M, Ohno T R, Beach J D, Barnes T M and Walls J M 2016 Sol. Energy Mater. Sol. Cells 147 203
[12] Du Z, Liu X and Zhang Y 2017 Ceramics International 43 7543
[13] Zhu Z, Du Z, Liu X, Zhang Y, Wu Q and Lin X 2021 Mater. Res. Express 8 016410
[14] Lin X, Zhang Y, Zhu Z, Wu Q and Liu X 2021 48th IEEE Photovoltaic Specialists Conference (PVSC), June 20—25, 2021, Fort Lauderdale, USA, pp. 867—873
[15] Li H, Liu X, Du Z and Yang B 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), June 14—19, 2015, New Orleans, USA, pp. 1—4
[16] Lin X L, Zhang Y F, Zhu Z Y, Wu Q C and Liu X X 2021 Chem. Phys. Lett. 767 138358
[17] Bista S S, Li D B, Awni R A, Song Z N, Subedi K K, Shrestha N, Rijal S, Neupane S, Grice C R, Phillips A B, Ellingson R J, Heben M, Li J V and Yan Y F 2021 ACS Appl. Mater. Interfaces 13 38432
[18] Dobson K D, Visoly-Fisher I, Hodes G and Cahen D 2000 Sol. Energy Mater. Sol. Cells 62 295
[19] Gessert T A, Mason A R, Sheldon P, Swartzlander A B, Niles D and Coutts T J 1996 J. Vac. Sci. Technol. A 14 806
[20] Gessert T A, Mason A R, Reedy R C, Matson R, Coutts T J and Sheldon P 1995 J. Electron. Mater. 24 1443
[21] Bohn R G, Tabory C N, Deak C, Shao M, Compaan A D and Reiter N 1994 Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion —— WCPEC (A Joint Conference of PVSC, PVSEC, and PSEC), December 5—9, 1994, Waikoloa, USA, pp. 354—356
[22] Demtsu S H and Sites J R 2006 Thin Solid Films 510 320
[23] Mahabaduge H P, Rance W L, Burst J M, Reese M O, Meysing D M, Wolden C A, Li J, Beach J D, Gessert T A, Metzger W K, Garner S and Barnes T M 2015 Appl. Phys. Lett. 106 133501
[24] Hegedus S S and Shafarman W N 2004 Prog. Photovolt. 12 155
[25] Pandey R, Munshi A, Shimpi T, Shah A, Bothwell A, Kuciauskas D and Sites J R 2021 Solar Rrl 5 2100126
[26] Lin X, Li H, Qu F, Gu H and Wang W 2018 Solar Energy 171 130
[27] Niemegeers A and Burgelman M 1997 J. Appl. Phys. 81 2881
[1] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[2] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[3] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[4] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[5] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[6] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[7] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[8] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[9] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[10] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[11] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[12] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[13] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[14] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[15] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
No Suggested Reading articles found!