Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 093201    DOI: 10.1088/1674-1056/ac6944
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

New designed helical resonator to improve measurement accuracy of magic radio frequency

Tian Guo(郭天)1,2, Peiliang Liu(刘培亮)1,2,†, and Chaohong Lee(李朝红)1,2
1 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing&School of Physics and Astronomy, Sun Yat-Sen University(Zhuhai Campus), Zhuhai 519082, China;
2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University(Guangzhou Campus), Guangzhou 510275, China
Abstract  Based upon the new designed helical resonator, the resonant radio frequency (RF) for trapping ions can be consecutively adjusted in a large range (about 12 MHz to 29 MHz) with high Q-factors (above 300). We analyze the helical resonator with a lumped element circuit model and find that the theoretical results fit well with the experimental data. With our resonator system, the resonant frequency near magic RF frequency (where the scalar Stark shift and the second-order Doppler shift due to excess micromotion cancel each other) can be continuously changed at kHz level. For 88Sr+ ion, compared to earlier results, the measurement accuracy of magic RF frequency can be improved by an order of magnitude upon rough calculation, and therefore the net micromotion frequency shifts can be further reduced. Also, the differential static scalar polarizability Δα0 of clock transition can be experimentally measured more accurately.
Keywords:  trapped ions      helical resonator      magic radio frequency      precision measurements  
Received:  23 February 2022      Revised:  15 April 2022      Accepted manuscript online:  22 April 2022
PACS:  32.30.Bv (Radio-frequency, microwave, and infrared spectra)  
  32.10.Dk (Electric and magnetic moments, polarizabilities)  
  37.10.Ty (Ion trapping)  
  37.90.+j (Other topics in mechanical control of atoms, molecules, and ions)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2019B030330001), the National Natural Science Foundation of China (Grant Nos. 12025509 and 11904418), the Science and Technology Program of Guangzhou, China (Grant No. 201904020024), and the Fundamental Research Funds for the Central Universities, China.
Corresponding Authors:  Peiliang Liu     E-mail:  liupliang@mail.sysu.edu.cn

Cite this article: 

Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红) New designed helical resonator to improve measurement accuracy of magic radio frequency 2022 Chin. Phys. B 31 093201

[1] March R E 1997 J. Mass Spectrom. 32 351
[2] Hager J W 2002 Rapid Commun. Mass Spectrom. 16 512
[3] Nolting D, Malek R and Makarov A 2019 Mass Spectrom. Rev. 38 150
[4] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[5] Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T and Gao K 2016 Phys. Rev. Lett. 116 013001
[6] Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J and Cornell E A 2017 Phys. Rev. Lett. 119 153001
[7] Yuan W H, Deng K, Ma Z Y, Che H, Xu Z T, Liu H L, Zhang J and Lu Z H 2018 Phys. Rev. A 98 052507
[8] Shao H, Huang Y, Guan H, Qian Y and Gao K 2016 Phys. Rev. A 94 042507
[9] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[10] Puebla R, Hwang M J, Casanova J and Plenio M B 2017 Phys. Rev. Lett. 118 073001
[11] Hu C K, Santos A C, Cui J M, Huang Y F, Sarandy M S, Li C F and Guo G C 2019 Phys. Rev. A 99 062320
[12] Monroe C and Kim J 2013 Science 339 1164
[13] Blatt R and Wineland D 2008 Nature 453 1008
[14] Steane A 1997 Appl. Phys. B 64 623
[15] Zhou F, Xie Y, Xu Y Y, Huang X R and Feng M 2010 Chin. Phys. Lett. 27 123203
[16] Ge W, Sawyer B C, Britton J W, Jacobs K, Bollinger J J and Foss-Feig M 2019 Phys. Rev. Lett. 122 030501
[17] Lanyon B P, Hempel C, Nigg D, Müller M, Gerritsma R, Zähringer F, Schindler P, Barreiro J T, Rambach M, Kirchmair G, Hennrich M, Zoller P, Blatt R and Roos C F 2011 Science 334 57
[18] Lv D, An S, Liu Z, Zhang J N, Pedernales J S, Lamata L, Solano E and Kim K 2018 Phys. Rev. X 8 021027
[19] Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y and Monroe C 2019 Quantum Sci. Technol. 4 014004
[20] Schneider C, Porras D and Schaetz T 2012 Rep. Prog. Phys. 75 024401
[21] Burt E A, Prestage J D, Tjoelker R L, Enzer D G, Kuang D, Murphy D W, Robison D E, Seubert J M, Wang R T and Ely T A 2021 Nature 595 43
[22] Huang Y, Guan H, Zeng M, Tang L and Gao K 2019 Phys. Rev. A 99 011401
[23] Kotler S, Akerman N, Glickman Y, Keselman A and Ozeri R 2011 Nature 473 61
[24] Baumgart I, Cai J M, Retzker A, Plenio M B and Wunderlich C 2016 Phys. Rev. Lett. 116 240801
[25] Campbell W C and Hamilton P 2017 J. Phys. B:At. Mol. Opt. Phys. 50 064002
[26] Deng K, Sun Y L, Yuan W H, Xu Z T, Zhang J, Lu Z H and Luo J 2014 Rev. Sci. Instrum. 85 104706
[27] Siverns J D, Simkins L R, Weidt S and Hensinger W K 2012 Appl. Phys. B 107 921
[28] Panja S, De S, Yadav S and Gupta A S 2015 Rev. Sci. Instrum. 86 056104
[29] Turchette Q A, Kielpinski D, King B E, Leibfried D, Meekhof D M, Myatt C J, Rowe M A, Sackett C A, Wood C S, Itano W M, Monroe C and Wineland D J 2000 Phys. Rev. A 61 063418
[30] Nandi J, Sikdar A K, Reza A, Misra A, Das P and Ray A 2020 Nucl. Instrum. Methods Phys. Res. A 980 164465
[31] Nandi J, Sikdar A K, Das P and Ray A 2022 Rev. Sci. Instrum. 93 014706
[32] Deri R J 1986 Rev. Sci. Instrum. 57 82
[33] Everard J K A, Cheng K K M and Dallas P A 1989 Electron. Lett. 25 1648
[34] Lea M J, Tepley N and Dobbs E R 1973 J. Phys. E:Sci. Instrum. 6 268
[35] Madej A A, Dubé P, Zhou Z, Bernard J E and Gertsvolf M 2012 Phys. Rev. Lett. 109 203002
[36] Dubé P, Madej A A, Zhou Z and Bernard J E 2013 Phys. Rev. A 87 023806
[37] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
[38] Macalpine W W and Schildknecht R O 1959 Proc. IRE 47 2099
[39] Dubé P, Madej A A, Tibbo M and Bernard J E 2014 Phys. Rev. Lett. 112 173002
[1] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[2] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[3] Micro-Gal level gravity measurements with cold atom interferometry
Zhou Min-Kang (周敏康), Duan Xiao-Chun (段小春), Chen Le-Le (陈乐乐), Luo Qin (罗覃), Xu Yao-Yao (徐耀耀), Hu Zhong-Kun (胡忠坤). Chin. Phys. B, 2015, 24(5): 050401.
[4] Multi-ion Mach–Zehnder interferometer with artificial nonlinear interactions
Hu Yan-Min (胡艳敏), Yang Wan-Li (杨万里), Xiao Xing (肖兴), Feng Mang (冯芒), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(3): 034205.
[5] Linear ion trap imperfection and the compensation of excess micromotion
Xie Yi(谢艺), Wan Wei(万威), Zhou Fei(周飞), Chen Liang(陈亮), Li Chao-Hong(李朝红), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(6): 063201.
[6] Irreversibility of a quantum walk induced by controllable decoherence employing random unitary operations
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Chen Liang(陈亮) Xie Yi(谢艺), Xue Peng(薛鹏), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(4): 040304.
[7] Preparation of the four-qubit cluster states in cavity QED and the trapped-ion system
Zheng Xiao-Juan (郑小娟), Xu Hui(徐慧), Fang Mao-Fa(方卯发), and Zhu Kai-Cheng(朱开成). Chin. Phys. B, 2010, 19(3): 034207.
[8] Two-qutrit maximally entangled states prepared via adiabatic passage in ion-trapped system
Huang Bin(黄彬), Lin Xia(林霞), Lin Hui(林慧), Cai Zhen-Hua(蔡振华), and Yang Rong-Can(杨榕灿). Chin. Phys. B, 2010, 19(12): 124206.
[9] Measurement of the secular motion frequency and the space charge density in the linear ion trap
Zhou Fei(周飞), Xie Yi(谢艺), Xu You-Yang(徐酉阳), Huang Xue-Ren(黄学人), and Feng Mang(冯芒). Chin. Phys. B, 2010, 19(11): 113206.
[10] Quantum logic gates with two-level trapped ions beyond Lamb--Dicke limit
Zheng Xiao-Juan(郑小娟), Luo Yi-Min(罗益民), and Cai Jian-Wu(蔡建武). Chin. Phys. B, 2009, 18(4): 1352-1356.
[11] Scheme for the implementation of 1→3 optimal phase-covariant quantum cloning in ion-trap systems
Yang Rong-Can(杨榕灿), Li Hong-Cai(李洪才), Lin Xiu(林秀), Huang Zhi-Ping(黄志平), and Xie Hong(谢鸿). Chin. Phys. B, 2008, 17(3): 967-970.
[12] Generation of unconventional geometric phase gates in ion trap-optical cavity system by squeezed operators
Zhang Ying-Qiao(张英俏), Jin Xing-Ri(金星日), and Zhang Shou(张寿). Chin. Phys. B, 2008, 17(2): 424-430.
[13] Scheme for implementing quantum dense coding with four-particle decoherence-free states in an ion trap
Zheng Xiao-Juan(郑小娟), Cao Shuai(曹帅), Fang Mao-Fa(方卯发), and Liao Xiang-Ping(廖湘萍). Chin. Phys. B, 2008, 17(2): 431-434.
[14] Cluster states prepared by using hot trapped ions
Yang Rong-Can(杨榕灿), Li Hong-Cai(李洪才), Lin Xiu(林秀), and Huang Zhi-Ping(黄志平). Chin. Phys. B, 2007, 16(8): 2219-2223.
[15] One-step discrimination scheme on N-particle Greenberger--Horne--Zeilinger bases
Wang Xin-Wen(汪新文), Liu Xiang(刘翔), and Fang Mao-Fa(方卯发). Chin. Phys. B, 2007, 16(5): 1215-1219.
No Suggested Reading articles found!