|
|
New designed helical resonator to improve measurement accuracy of magic radio frequency |
Tian Guo(郭天)1,2, Peiliang Liu(刘培亮)1,2,†, and Chaohong Lee(李朝红)1,2 |
1 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing&School of Physics and Astronomy, Sun Yat-Sen University(Zhuhai Campus), Zhuhai 519082, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University(Guangzhou Campus), Guangzhou 510275, China |
|
|
Abstract Based upon the new designed helical resonator, the resonant radio frequency (RF) for trapping ions can be consecutively adjusted in a large range (about 12 MHz to 29 MHz) with high Q-factors (above 300). We analyze the helical resonator with a lumped element circuit model and find that the theoretical results fit well with the experimental data. With our resonator system, the resonant frequency near magic RF frequency (where the scalar Stark shift and the second-order Doppler shift due to excess micromotion cancel each other) can be continuously changed at kHz level. For 88Sr+ ion, compared to earlier results, the measurement accuracy of magic RF frequency can be improved by an order of magnitude upon rough calculation, and therefore the net micromotion frequency shifts can be further reduced. Also, the differential static scalar polarizability Δα0 of clock transition can be experimentally measured more accurately.
|
Received: 23 February 2022
Revised: 15 April 2022
Accepted manuscript online: 22 April 2022
|
PACS:
|
32.30.Bv
|
(Radio-frequency, microwave, and infrared spectra)
|
|
32.10.Dk
|
(Electric and magnetic moments, polarizabilities)
|
|
37.10.Ty
|
(Ion trapping)
|
|
37.90.+j
|
(Other topics in mechanical control of atoms, molecules, and ions)
|
|
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2019B030330001), the National Natural Science Foundation of China (Grant Nos. 12025509 and 11904418), the Science and Technology Program of Guangzhou, China (Grant No. 201904020024), and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Peiliang Liu
E-mail: liupliang@mail.sysu.edu.cn
|
Cite this article:
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红) New designed helical resonator to improve measurement accuracy of magic radio frequency 2022 Chin. Phys. B 31 093201
|
[1] March R E 1997 J. Mass Spectrom. 32 351 [2] Hager J W 2002 Rapid Commun. Mass Spectrom. 16 512 [3] Nolting D, Malek R and Makarov A 2019 Mass Spectrom. Rev. 38 150 [4] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201 [5] Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T and Gao K 2016 Phys. Rev. Lett. 116 013001 [6] Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J and Cornell E A 2017 Phys. Rev. Lett. 119 153001 [7] Yuan W H, Deng K, Ma Z Y, Che H, Xu Z T, Liu H L, Zhang J and Lu Z H 2018 Phys. Rev. A 98 052507 [8] Shao H, Huang Y, Guan H, Qian Y and Gao K 2016 Phys. Rev. A 94 042507 [9] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281 [10] Puebla R, Hwang M J, Casanova J and Plenio M B 2017 Phys. Rev. Lett. 118 073001 [11] Hu C K, Santos A C, Cui J M, Huang Y F, Sarandy M S, Li C F and Guo G C 2019 Phys. Rev. A 99 062320 [12] Monroe C and Kim J 2013 Science 339 1164 [13] Blatt R and Wineland D 2008 Nature 453 1008 [14] Steane A 1997 Appl. Phys. B 64 623 [15] Zhou F, Xie Y, Xu Y Y, Huang X R and Feng M 2010 Chin. Phys. Lett. 27 123203 [16] Ge W, Sawyer B C, Britton J W, Jacobs K, Bollinger J J and Foss-Feig M 2019 Phys. Rev. Lett. 122 030501 [17] Lanyon B P, Hempel C, Nigg D, Müller M, Gerritsma R, Zähringer F, Schindler P, Barreiro J T, Rambach M, Kirchmair G, Hennrich M, Zoller P, Blatt R and Roos C F 2011 Science 334 57 [18] Lv D, An S, Liu Z, Zhang J N, Pedernales J S, Lamata L, Solano E and Kim K 2018 Phys. Rev. X 8 021027 [19] Pagano G, Hess P W, Kaplan H B, Tan W L, Richerme P, Becker P, Kyprianidis A, Zhang J, Birckelbaw E, Hernandez M R, Wu Y and Monroe C 2019 Quantum Sci. Technol. 4 014004 [20] Schneider C, Porras D and Schaetz T 2012 Rep. Prog. Phys. 75 024401 [21] Burt E A, Prestage J D, Tjoelker R L, Enzer D G, Kuang D, Murphy D W, Robison D E, Seubert J M, Wang R T and Ely T A 2021 Nature 595 43 [22] Huang Y, Guan H, Zeng M, Tang L and Gao K 2019 Phys. Rev. A 99 011401 [23] Kotler S, Akerman N, Glickman Y, Keselman A and Ozeri R 2011 Nature 473 61 [24] Baumgart I, Cai J M, Retzker A, Plenio M B and Wunderlich C 2016 Phys. Rev. Lett. 116 240801 [25] Campbell W C and Hamilton P 2017 J. Phys. B:At. Mol. Opt. Phys. 50 064002 [26] Deng K, Sun Y L, Yuan W H, Xu Z T, Zhang J, Lu Z H and Luo J 2014 Rev. Sci. Instrum. 85 104706 [27] Siverns J D, Simkins L R, Weidt S and Hensinger W K 2012 Appl. Phys. B 107 921 [28] Panja S, De S, Yadav S and Gupta A S 2015 Rev. Sci. Instrum. 86 056104 [29] Turchette Q A, Kielpinski D, King B E, Leibfried D, Meekhof D M, Myatt C J, Rowe M A, Sackett C A, Wood C S, Itano W M, Monroe C and Wineland D J 2000 Phys. Rev. A 61 063418 [30] Nandi J, Sikdar A K, Reza A, Misra A, Das P and Ray A 2020 Nucl. Instrum. Methods Phys. Res. A 980 164465 [31] Nandi J, Sikdar A K, Das P and Ray A 2022 Rev. Sci. Instrum. 93 014706 [32] Deri R J 1986 Rev. Sci. Instrum. 57 82 [33] Everard J K A, Cheng K K M and Dallas P A 1989 Electron. Lett. 25 1648 [34] Lea M J, Tepley N and Dobbs E R 1973 J. Phys. E:Sci. Instrum. 6 268 [35] Madej A A, Dubé P, Zhou Z, Bernard J E and Gertsvolf M 2012 Phys. Rev. Lett. 109 203002 [36] Dubé P, Madej A A, Zhou Z and Bernard J E 2013 Phys. Rev. A 87 023806 [37] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025 [38] Macalpine W W and Schildknecht R O 1959 Proc. IRE 47 2099 [39] Dubé P, Madej A A, Tibbo M and Bernard J E 2014 Phys. Rev. Lett. 112 173002 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|