CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications |
Zhihong Chen(陈治宏)1, Minhan Mi(宓珉瀚)1,3,†, Jielong Liu(刘捷龙)2, Pengfei Wang(王鹏飞)1, Yuwei Zhou(周雨威)2, Meng Zhang(张濛)1, Xiaohua Ma(马晓华)1, and Yue Hao(郝跃)1 |
1 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China; 2 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China; 3 Guangzhou Institute of Technology, Xidian University, Guangzhou 510555, China |
|
|
Abstract We demonstrate a novel Si-rich SiN bilayer passivation technology for AlGaN/GaN high electron mobility transistors (HEMTs) with thin-barrier to minimize surface leakage current to enhance the breakdown voltage. The bilayer SiN with 20-nm Si-rich SiN and 100-nm Si$_{3}$N$_{4}$ was deposited by plasma-enhanced chemical vapor deposition (PECVD) after removing 20-nm SiO$_{2}$ pre-deposition layer. Compared to traditional Si$_{3}$N$_{4}$ passivation for thin-barrier AlGaN/GaN HEMTs, Si-rich SiN bilayer passivation can suppress the current collapse ratio from 18.54% to 8.40%. However, Si-rich bilayer passivation leads to a severer surface leakage current, so that it has a low breakdown voltage. The 20-nm SiO$_{2}$ pre-deposition layer can protect the surface of HEMTs in fabrication process and decrease Ga-O bonds, resulting in a lower surface leakage current. In contrast to passivating Si-rich SiN directly, devices with the novel Si-rich SiN bilayer passivation increase the breakdown voltage from 29 V to 85 V. Radio frequency (RF) small-signal characteristics show that HEMTs with the novel bilayer SiN passivation leads to $f_{\rm T}/f_{\rm max}$ of 68 GHz/102 GHz. At 30 GHz and $V_{\rm DS} = 20$ V, devices achieve a maximum $P_{\rm out}$ of 5.2 W/mm and a peak power-added efficiency (PAE) of 42.2%. These results indicate that HEMTs with the novel bilayer SiN passivation can have potential applications in the millimeter-wave range.
|
Received: 31 May 2022
Revised: 11 July 2022
Accepted manuscript online: 18 July 2022
|
PACS:
|
71.55.Eq
|
(III-V semiconductors)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB1804902), the National Natural Science Foundation of China (Grant Nos. 61904135, 62090014, and 11690042), the Fundamental Research Funds for the Central Universities, the Innovation Fund of Xidian University (Grant No. YJS2213), the China Postdoctoral Science Foundation (Grant Nos. 2018M640957 and BX20200262), the Key Research and Development Program of Guangzhou (Grant No. 202103020002), Wuhu and Xidian University Special Fund for Industry–UniversityResearch Cooperation (Grant No. XWYCXY-012021014-HT), and the Fundamental Research Funds for the Central Universities, China (Grant No. XJS221110). |
Corresponding Authors:
Minhan Mi
E-mail: miminhan@qq.com
|
Cite this article:
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃) A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications 2022 Chin. Phys. B 31 117105
|
[1] Chung J W, Hoke W E, Chumbes E M and Palacios T 2010 IEEE Electron Dev. Lett. 31 195 [2] Lee D S, Liu Z H and Palacios T 2014 Jpn. J. Appl. Phys. 53 100212 [3] Cakmak H, Ozturk M, Ozbay E and Imer B 2021 IEEE Trans. Electron Dev. 68 1006 [4] Zhang Y C, Huang S, Wei K, Zhang S, Wang X H, Zheng Y K, Liu G G, Chen X J, Li Y K and Liu X Y 2020 IEEE Electron Dev. Lett. 41 701 [5] Khan M A, Chen Q, Sun C J, Yang J W, Blasingame M, Shur M S and Park H 1996 Appl. Phys. Lett. 68 514 [6] Kohn E, Daumiller I, Schmid P, Nguyen N X and Nguyen C N 1999 Electron. Lett. 35 1022 [7] Eastman L F 1999 Physica Status Solidi A 176 175 [8] Huang T D, Bergsten J, Thorsell M and Rorsman N 2018 IEEE Trans. Electron Dev. 65 908 [9] Huang T D, Axelsson O, Bergsten J, Thorsell M and Rorsman N 2020 IEEE Trans. Electron Dev. 67 2297 [10] Vetury, Ramakrishna, Zhang and Naiqain Q 2001 IEEE Trans. Electron Dev. 48 560 [11] Green B M, Chu K K, Chumbes E M, Smart J A, Shealy J R and Eastman L F 2000 IEEE Electron Dev. Lett. 21 268 [12] Klein P B, Binari S C, Ikossi-Anastasiou K, Wickenden A E, Koleske D D, Henry R L and Katzer D S 2001 Electron. Lett. 37 661 [13] Tilak V, Green B, Kaper V, Kim H, Prunty T, Smart J, Shealy J and Eastman L 2002 IEEE Electron Dev. Lett. 22 504 [14] Wang X H, Huang S, Zheng Y K, Wei K, Chen X J, Liu G G, Yuan T T, Luo W J, Pang L, Jiang H J, Li J F, Zhao C, Zhang H X and Liu X Y 2015 IEEE Electron Dev. Lett. 36 666 [15] Hasan M T, Asano T, Tokuda H and Kuzuhara M 2013 IEEE Electron Dev. Lett. 34 1379 [16] Long R D, Hazeghi A, Gunji M, Nishi Y and McIntyre P C 2012 Appl. Phys. Lett. 101 241606 [17] Liu Z H, Ng G I and Arulkumaran S 2009 IEEE Electron Dev. Lett. 30 1122 [18] Gatabi I R, Johnson D W, Woo J H, Anderson J W, Coan M R, Piner E L and Harris H R 2013 IEEE Trans. Electron Dev. 60 1082 [19] Tang Z K, Huang S, Jiang Q M, Liu S H, Liu C and Chen K J 2013 IEEE Electron Dev. Lett. 34 366 [20] Liu J L, Mi M H, Zhu J J, Liu S Y, Wang P F, Zhou Y W, Zhu Q, Wu M, Lu H, Hou B, Wang H, Cai X L, Zhang Y, Duan X Y, Yang L, Ma X H and Hao Y 2021 IEEE Trans. Electron Dev. 69 631 [21] Huang T D, Malmros A, Bergsten J, Gustafsson S, Axelsson O, Thorsell M and Rorsman N 2015 IEEE Electron Dev. Lett. 36 537 [22] Kikkawa T, Iwai T and Ohki T 2008 Fujitsu Science Technology 44 333 [23] Makiyama K, Ohki T, Okamoto N, Kanamura M, Masuda S, Nakasha Y, Joshin K, Imanishi K, Hara N, Ozaki S, Nakamura N and Kikkawa T 2011 Physica Status Solidi (c) 8 2442 [24] Minko A, Hoel V, Morvan E, Grimbert B, Soltani A, Delos E, Ducatteau D, Gaquiere C, Theron D, De Jaeger J C, Lahreche H, Wedzikowski L, Langer R, Bove P and Bove P 2004 IEEE Electron Dev. Lett. 25 453 [25] Lin Y S, Lain Y W and Hsu S S H 2010 IEEE Electron Dev. Lett. 31 102 [26] Kotani J, Tajima M, Kasai S and Hashizume T 2007 Appl. Phys. Lett. 91 093501 [27] Tan W S, Uren M J, Houston P A, Green R T, Balmer R S and Martin T 2006 IEEE Electron Dev. Lett. 27 1 [28] Lin S X, Wang M J, Xie B, Wen C P, Yu M, Wang J Y, Hao Y L, Wu W G, Huang S, Chen K J and Bo S 2015 IEEE Electron Dev. Lett. 36 757 [29] Zhao Z Q, Liao D W and Du J F 2012 IEEE 11$th InternationalConference on Solid-State and Integrated Circuit Technology, October 29-November 1, 2012, Xi'an, China, p. 1 [30] Zhang N Q, Moran B, Denbaars S P, Mishra U K and Ma T P 2001 International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224), December 2-5, 2001, Washington, DC, USA, p. 5 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|