Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027301    DOI: 10.1088/1674-1056/ac1414

High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching

Xinchuang Zhang(张新创)1, Bin Hou(侯斌)2, Fuchun Jia(贾富春)2, Hao Lu(芦浩)2, Xuerui Niu(牛雪锐)2, Mei Wu(武玫)2, Meng Zhang(张濛)2, Jiale Du(杜佳乐)2, Ling Yang(杨凌)2, Xiaohua Ma(马晓华)2,†, and Yue Hao(郝跃)2
1 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China;
2 School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  An atomic-level controlled etching (ACE) technology is invstigated for the fabrication of recessed gate AlGaN/GaN high-electron-mobility transistors (HEMTs) with high power added efficiency. We compare the recessed gate HEMTs with conventional etching (CE) based chlorine, Cl2-only ACE and BCl3/Cl2 ACE, respectively. The mixed radicals of BCl3/Cl2 were used as the active reactants in the step of chemical modification. For ensuring precise and controllable etching depth and low etching damage, the kinetic energy of argon ions was accurately controlled. These argon ions were used precisely to remove the chemical modified surface atomic layer. Compared to the HEMTs with CE, the characteristics of devices fabricated by ACE are significantly improved, which benefits from significant reduction of etching damage. For BCl3/Cl2 ACE recessed HEMTs, the load pull test at 17 GHz shows a high power added efficiency (PAE) of 59.8% with an output power density of 1.6 W/mm at Vd=10 V, and a peak PAE of 44.8% with an output power density of 3.2 W/mm at Vd=20 V in a continuous-wave mode.
Keywords:  AlGaN/GaN HEMTs      recess etching      low damage      high power added efficiency  
Received:  07 May 2021      Revised:  23 June 2021      Accepted manuscript online:  14 July 2021
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  81.05.Ea (III-V semiconductors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 62090014, 62188102, 62104184, 62104178, and 62104179) and the Fundamental Research Funds for the Central Universities of China (Grant Nos. XJS201102, XJS211101, XJS211106, and ZDRC2002).
Corresponding Authors:  Xiaohua Ma     E-mail:

Cite this article: 

Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃) High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching 2022 Chin. Phys. B 31 027301

[1] Chung J W, Hoke W E, Chumbes E M and Palacios T 2010 IEEE Electron Dev. Lett. 31 195
[2] Hao Y, Yang L, Ma X H, Ma J G, Cao M Y, Pan C Y, Wang C and Zhang J C 2011 IEEE Electron Dev. Lett. 32 626
[3] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Dev. Lett. 25 117
[4] Ma J, Zhu M and Matioli E 2017 IEEE Electron Dev. Lett. 38 1704
[5] Rüdiger Q 2008 Gallium Nitride Electronics (Berlin:Springer-Verlag) Vol. 96 pp. 19-21
[6] Wang H, Xie R, Liu C, Wei J, Tang G and Chen K J 2016 IEEE Energy Conversion Congress and Exposition (ECCE), September 18-22, 2016, Milwaukee, WI, USA, pp. 1-6
[7] Li X, Hove M V, Zhao M, Geens K, Lempinen VP, Sormunen J, Groeseneken G and Decoutere S 2017 IEEE Electron Dev. Lett. 38 918
[8] Zhang K, Kong Y, Zhu G, Zhou J, Yu X, Kong C, Li Z and Chen T 2017 IEEE Electron Dev. Lett. 38 615
[9] Marti D, Tirelli S, Alt A R, Roberts J and Bolognesi C R 2012 IEEE Electron Dev. Lett. 33 1372
[10] Shul RJ, Zhang L, Baca AG, Willison CG, Han J, Pearton SJ, Lee KP and Ren F 2001 Solid State Electron. 45 13
[11] Cao X A, Cho H, Pearton S J, Dang G T, Zhang A P, Ren F, Shul R J, Zhang L, Hickman R and Van Hove J M 1999 Appl. Phys. Lett. 75 232
[12] Johnson N R, Hite J K, Mastro M A, Jr C R Eddy and George S M 2019 Appl. Phys. Lett. 114 243103
[13] Kauppinen C, Khan S A, Sundqvist J, Suyatin D B, Suihkonen S, Kauppinen E I and Sopanen M 2017 J. Vac. Sci. Technol. A 35 060603
[14] Ohba T, Yang W, Tan S, Kanarik K J and Nojiri K 2017 Jpn. J. Appl. Phys. 56 06HB06
[15] Kim H S, Lee D H, Lee J W, Kim T I and Yeom G Y 2000 Vacuum 56 45
[16] Wu T, Hao Z, Tang G and Luo Y 2003 Jpn. J. Appl. Phys. 42 L257
[17] Kanarik K J et al. 2017 J. Vac. Sci. Technol. A 35 05C302
[18] Zhirnov E, Stepanov S, Wang W N, Shreter Y G, Takhin D V and Bochkareva N I 2004 J. Vac. Sci. Technol. A 22 2336
[19] Samukawa S and Terada K 1994 Proceedings of VLSI Technology Symposium, June 7-9, 1994 Honolulu, HI, USA, p. 27
[20] Ohtake H, Samukawa S, Noguchi K, Lida H Sato A and Qian X 1999 Plasma Process-Induced Damage, 1999 4th International Symposium on Plasma Process-Induced Damage, May 9-11, 1999, Monterey, CA, USA, p. 37
[21] Kumagai S, Shiraiwa T and Samukawa S 2004 J. Vac. Sci. Technol. A 22 1093
[22] Mohammad S N and Morko H 1996 Prog. Quantum Electron. 20 361
[23] Wang X, Huang S, Zheng Y, Wei K, Chen X, Zhang H and Liu X 2014 IEEE Trans. Electron Devices 61 1341
[24] Zhang Y, Huang S, Wei K, Zhang S Wang X, Zheng Y, Liu G, Chen X, Li Y and Liu X 2020 IEEE Electron Dev. Lett. 41 701
[25] Jimenez J L and Chowdhury U 2008 IEEE International Reliability Physics Symposium, April 27-May 1, 2008, Phoenix, AZ, USA p. 429
[26] Mi M H, Ma X H, Yang L, Lu Y, Hou B, Zhu J J, Zhang M, Zhang H S, Zhu Q, Yang L A and Hao Y 2017 IEEE Trans. Electron Devices 64 4875
[1] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[2] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[3] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[4] Breakdown mechanisms in AlGaN/GaN high electron mobility transistors with different GaN channel thickness values
Ma Xiao-Hua (马晓华), Zhang Ya-Man (张亚嫚), Wang Xin-Hua (王鑫华), Yuan Ting-Ting (袁婷婷), Pang Lei (庞磊), Chen Wei-Wei (陈伟伟), Liu Xin-Yu (刘新宇). Chin. Phys. B, 2015, 24(2): 027101.
[5] Transport mechanism of reverse surface leakage current in AlGaN/GaN high-electron mobility transistor with SiN passivation
Zheng Xue-Feng (郑雪峰), Fan Shuang (范爽), Chen Yong-He (陈永和), Kang Di (康迪), Zhang Jian-Kun (张建坤), Wang Chong (王冲), Mo Jiang-Hui (默江辉), Li Liang (李亮), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2015, 24(2): 027302.
[6] Schottky forward current transport mechanisms in AlGaN/GaN HEMTs over a wide temperature range
Wu Mei (武玫), Zheng Da-Yong (郑大勇), Wang Yuan (王媛), Chen Wei-Wei (陈伟伟), Zhang Kai (张凯), Ma Xiao-Hua (马晓华), Zhang Jin-Cheng (张进成), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(9): 097307.
[7] Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition
Li Ming (黎明), Wang Yong (王勇), Wong Kai-Ming (王凯明), Lau Kei-May (刘纪美). Chin. Phys. B, 2014, 23(3): 038403.
[8] The reliability of AlGaN/GaN high electron mobility transistors under step-electrical stresses
Ma Xiao-Hua(马晓华), Jiao Ying(焦颖), Ma Ping(马平), He Qiang(贺强), Ma Ji-Gang(马骥刚), Zhang Kai(张凯), Zhang Hui-Long(张会龙), Zhang Jin-Cheng(张进成), and Hao Yue(郝跃) . Chin. Phys. B, 2011, 20(12): 127305.
[9] MMIC LNA based novel composite-channel Al0.3Ga0.7N/Al0.05Ga 0.95N/GaN HEMTs
Cheng Zhi-Qun(程知群), Cai Yong(蔡勇), Liu Jie(刘杰), Zhou Yu-Gang(周玉刚), Lau Kei May, and Chen J. Kevin. Chin. Phys. B, 2007, 16(11): 3494-3497.
No Suggested Reading articles found!