Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 127701    DOI: 10.1088/1674-1056/ac7a0e

Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator

Taofei Pu(蒲涛飞)1, Shuqiang Liu(刘树强)2, Xiaobo Li(李小波)3, Ting-Ting Wang(王婷婷)4, Jiyao Du(都继瑶)5,†, Liuan Li(李柳暗)6,‡, Liang He(何亮)2, Xinke Liu(刘新科)3, and Jin-Ping Ao(敖金平)4
1 Hanshan Normal University, Chaozhou 521041, China;
2 No.;
5 Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China;
3 Shenzhen University, Shenzhen 518000, China;
4 School of Microelectronics, Xidian University, Xi'an 710071, China;
5 School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China;
6 Yibin Research Institute, Jilin University, Yibin 644000, China
Abstract  AlGaN/GaN heterojunction field-effect transistors (HFETs) with p-GaN cap layer are developed for normally-off operation, in which an in-situ grown AlN layer is utilized as the gate insulator. Compared with the SiNx gate insulator, the AlN/p-GaN interface presents a more obvious energy band bending and a wider depletion region, which helps to positively shift the threshold voltage. In addition, the relatively large conduction band offset of AlN/p-GaN is beneficial to suppress the gate leakage current and enhance the gate breakdown voltage. Owing to the introduction of AlN layer, normally-off p-GaN capped AlGaN/GaN HFET with a threshold voltage of 4 V and a gate swing of 13 V is realized. Furthermore, the field-effect mobility is approximately 1500 cm2·V-1·s-1 in the 2DEG channel, implying a good device performance.
Keywords:  AlGaN/GaN HFET      normally-off      in-situ AlN      metal-insulator-semiconductor  
Received:  23 December 2021      Revised:  12 June 2022      Accepted manuscript online:  18 June 2022
PACS:  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 61904207), scientific research support foundation for introduced high-level talents of Shenyang Ligong University (Grant No. 1010147000914), and the Natural Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC0886).
Corresponding Authors:  Jiyao Du, Liuan Li     E-mail:;

Cite this article: 

Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平) Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator 2022 Chin. Phys. B 31 127701

[1] Okita H, Hikita M and Nishio A 2017 IEEE Trans. Electron Devices 64 1026
[2] Kukhtyaeva O B and Egorkin V I 2019 J. Phys.: Conf. Series 1410 012192
[3] Hao R H, Fu K and Yu G H 2016 Appl. Phys. Lett. 109 152106
[4] Niu D, Wang Q, Li Wei, et al. 2020 Jpn. J. Appl. Phys. 59 111001
[5] Zhou Q, Liu L and Zhang A B 2016 IEEE Electron Device Lett. 37 165
[6] Pu T F, Wang X and Huang Q 2019 IEEE Electron Device Lett. 40 185
[7] Pu T F, Huang Q and Zhang T 2018 Superlatt. Microstruct. 120 448
[8] Pu T F, Chen Y and Li X B 2020 J. Phys. D 53 415104
[9] Wang C C, Hua M Y and Chen J T 2020 IEEE Electron Device Lett. 41 545
[10] Jiang H X and Lyu Q F 2021 IEEE Trans. Electron Devices 68 653
[11] Li X D, Hove M V and Zhao M 2017 IEEE Electron Device Lett. 38 918
[12] Tang Z K, Jiang Q M and Lu Y Y 2013 IEEE Electron Device Lett. 34 1373
[13] Han P C, Yan Z Z, Wu C H, et al. 2019 IEEE 31th International Symposium on Power Semiconductor Devices and ICs (ISPSD)
[14] Yu C J, Hsu C W, Wu M C, et al. 2020 IEEE Electron Device Lett. 41 673
[15] He Y L, Zhang F, Liu K, et al. 2021 Chin. Phys. B 31 068501
[16] Lee F, Su L Y and Wang C H 2015 IEEE Electron Device Lett. 36 232
[17] Hwang I J, Kim J and Choi H S 2013 IEEE Electron Device Lett. 34 202
[18] Sugiyama T, Lida D and Iwaya M 2010 Phys. Status Solidi C 7 1980
[19] Jiang H X, Zhu R Q and Lyu Q F 2019 IEEE Electron Device Lett. 40 530
[20] Tang X, Li B K and Moghadam H A 2018 IEEE Electron Device Lett. 39 8
[21] Huang S, Jiang Q, Yang S, et al. 2013 IEEE Electron Device Lett. 34 193
[22] Sugiyama T, lida D, Iwaya M, et al. 2010 Phys. Stat. Solidi C 7 1980
[23] Wu T L, Marcon D, You S, et al. 2015 IEEE Electron Device Lett. 36 1001
[24] Stoffels S, Posthuma N, Decoutere S, et al. 2019 IEEE International Reliability Physics Symposium (IRPS)
[25] Ťapajna M, Hilt O, Bahat-Treidel E, et al. 2016 IEEE Electron Device Lett. 37 385
[26] Stockman A, Masin F, Meneghini M, et al. 2018 IEEE Trans. Electron Devices 65 5365
[27] He J, Wei J, Yang S, et al. 2019 IEEE Trans. Electron Devices 66 3453
[1] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[2] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[3] Synthesis of thermally stable HfOxNy as gate dielectric for AlGaN/GaN heterostructure field-effect transistors
Tong Zhang(张彤), Taofei Pu(蒲涛飞), Tian Xie(谢天), Liuan Li(李柳暗), Yuyu Bu(补钰煜), Xiao Wang(王霄), Jin-Ping Ao(敖金平). Chin. Phys. B, 2018, 27(7): 078503.
[4] Plasma-assisted surface treatment for low-temperature annealed ohmic contact on AlGaN/GaN heterostructure field-effect transistors
Lei Wang(王磊), Jiaqi Zhang(张家琦), Liuan Li(李柳暗), Yutaro Maeda(前田裕太郎), Jin-Ping Ao(敖金平). Chin. Phys. B, 2017, 26(3): 037201.
[5] Effects of post-annealed floating gate on the performance of AlGaN/GaN heterostructure field-effect transistors
Peng Cui(崔鹏), Zhao-Jun Lin(林兆军), Chen Fu(付晨), Yan Liu(刘艳), Yuan-Jie Lv(吕元杰). Chin. Phys. B, 2017, 26(12): 127102.
[6] Self-aligned-gate AlGaN/GaN heterostructure field-effect transistor with titanium nitride gate
Jia-Qi Zhang(张家琦), Lei Wang(王磊), Liu-An Li(李柳暗), Qing-Peng Wang(王青鹏), Ying Jiang(江滢), Hui-Chao Zhu(朱慧超), Jin-Ping Ao(敖金平). Chin. Phys. B, 2016, 25(8): 087308.
[7] Normally-off metamorphic AlInAs/AlInAs HEMTs on Si substrates grown by MOCVD
Huang Jie (黄杰), Li Ming (黎明), Lau Kei-May (刘纪美). Chin. Phys. B, 2015, 24(7): 078102.
[8] Design consideration and fabrication of 1.2-kV 4H-SiC trenched-and-implanted vertical junction field-effect transistors
Chen Si-Zhe (陈思哲), Sheng Kuang (盛况). Chin. Phys. B, 2014, 23(7): 077201.
[9] The electrical characteristics of a 4H–silicon carbide metal–insulator–semiconductor structure with Al2O3 as the gate dielectric
Liu Li(刘莉), Yang Yin-Tang(杨银堂), and Ma Xiao-Hua(马晓华) . Chin. Phys. B, 2011, 20(12): 127204.
[10] Numerical simulation of transconductance of AlGaN/GaN heterojunction field effect transistors at high temperatures
Chang Yuan-Cheng (常远程), Zhang Yi-Men (张义门), Zhang Yu-Ming (张玉明). Chin. Phys. B, 2006, 15(3): 636-640.
No Suggested Reading articles found!