Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 027307    DOI: 10.1088/1674-1056/25/2/027307
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Controllable synthesis of ultrathin vanadium oxide nanobelts via an EDTA-mediated hydrothermal process

Yu-Xiang Qin(秦玉香), Cheng Liu(刘成), Wei-Wei Xie(谢威威), Meng-Yang Cui(崔梦阳)
School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, China
Abstract  Ultrathin VO2 nanobelts with rough alignment features are prepared on the induction layer-coated substrates by an ethylenediaminetetraacetic acid (EDTA)-mediated hydrothermal process. EDTA acts as a chelating reagent and capping agent to facilitate the one-dimensional (1D) preferential growth of ultrathin VO2 nanobelts with high crystallinities and good uniformities. The annealed induction layer and concentration of EDTA are found to play crucial roles in the formation of aligned and ultrathin nanobelts. Variation in EDTA concentration can change the VO2 morphology of ultrathin nanobelts into that of thick nanoplates. Mild annealing of ultrathin VO2 nanobelts at 350 ℃ in air results in the formation of V2O5 nanobelts with a nearly unchanged ultrathin structure. The nucleation and growth mechanism involved in the formations of nanobelts and nanoplates are proposed. The ethanol gas sensing properties of the V2O5 nanobelt networks-based sensor are investigated in a temperature range from 100 ℃ to 300 ℃ over ethanol concentrations ranging from 3 ppm to 500 ppm. The results indicate that the V2O5 nanobelt network sensor exhibits high sensitivity, good reversibility, and fast response-recovery characteristics with an optimal working temperature of 250 ℃.
Keywords:  semiconductors      nanobelt      crystal growth      gas sensor  
Received:  08 August 2015      Revised:  01 October 2015      Accepted manuscript online: 
PACS:  73.61.Cw (Elemental semiconductors)  
  91.67.Jk (Geochemistry of hydrothermal systems)  
  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
  61.72.up (Other materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274074, 61271070, and 61574100).
Corresponding Authors:  Yu-Xiang Qin     E-mail:  qinyuxiang@tju.edu.cn,qyxtj@126.com

Cite this article: 

Yu-Xiang Qin(秦玉香), Cheng Liu(刘成), Wei-Wei Xie(谢威威), Meng-Yang Cui(崔梦阳) Controllable synthesis of ultrathin vanadium oxide nanobelts via an EDTA-mediated hydrothermal process 2016 Chin. Phys. B 25 027307

[1] Schoch Rebo B, Han Jongyoon and Renaud Philippe 2008 Rev. Mod. Phys. 80 839
[2] Cui Y, Charles M and Lieber 2001 Science 291 851
[3] Pu C Y, Zhou D W, Bao D X, Lu C, Jin X L, Su T C and Zhang F W 2014 Chin. Phys. B 23 026201
[4] Tang X Y, Gao H, Wu L L, Wen J, Pan S M, Liu X and Zhang X T 2015 Chin. Phys. B 24 394
[5] Nagaraju G, Chithaiahb P, Mahadevaiah N and Ashokac S 2012 Cryst. Res. Technol. 47 868
[6] Li B X, Xu Y, Rong G X, Jing M and Xie Y 2006 Nanotechnology 17 2560
[7] Liu J F, Wang X, Peng Q and Li Y D 2006 Sens. Actuators B 115 481
[8] Zhang Y F, Zhang X Z, Huang Y, Huang C, Niu F, Meng C G and Tan X Y 2014 Solid State Commun. 180 24
[9] Qin M L, Liang Q, Pan A Q, Liang S Q, Zhang Q, Tang Y and Tan X P 2014 J. Power Sources 268 700
[10] Mjejri I, Etteyeb N and Sediri F 2014 Mater. Res. Bull. 60 97
[11] Zeng M, Yin H H and Yu K 2012 Chem. Eng. J. 188 64
[12] Shi S F, Cao M H, He X Y and Xie H M 2007 Cryst. Growth Des. 7 1893
[13] Thirumalai J, Chandramohan R and Vijayan T A 2011 Mater. Chem. Phys. 127 259
[14] Luo F, Jia C J, Song W, You L P and Yan C H 2005 Cryst. Growth Des. 5 137
[15] Wang X H, Sang Y H, Wang D Z, Ji S Z and Liu H 2015 J. Alloys Compd. 639 571
[16] Kang Z H, Wang E B, Mao B D, Su Z G, Gao L, Lian S Y and Xu L 2005 J. Am. Chem. Soc. 127 6534
[17] Li G C, Pang S P, Jiang L, Guo Z Y and Zhang Z K 2006 J. Phys. Chem. B 110 9383
[18] Qin Y X, Fan G T, Liu K X and Hu M 2014 Sens. Actuators B 190 141
[19] Yue J, Jiang X C and Yu A 2012 J. Phys. Chem. C 116 8145
[20] Kaneti Y V, Zakaria Q M D, Zhang Z, Chen C and Liu M 2014 J. Mater. Chem. A 2 13283
[21] Deng H, Liu C, Yang S, Xiao S, Zhou Z and Wang Q 2008 Cryst. Growth Des. 8 4432
[22] Abbasi M, Rozati S M, Irani R and Beke S 2015 Mater. Sci. Semicond. Process. 29 132
[23] Wang C H, Yin L, Zhang L, Xiang D and Gao R 2010 Sensors 10 2088
[24] Choi Y J, Hwang I S, Park J G, Choi K J, Park J H and Lee J H 2008 Nanotechnology 19 095508
[25] Lee J H 2009 Sens. Actuators B: Chemical 140 319
[1] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[2] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[3] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
[4] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[5] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[6] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[7] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[8] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[9] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[10] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[11] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[12] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[13] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[14] Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青). Chin. Phys. B, 2021, 30(5): 058102.
[15] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
No Suggested Reading articles found!