Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 058102    DOI: 10.1088/1674-1056/abc163
Special Issue: SPECIAL TOPIC — Physics in neuromorphic devices
SPECIAL TOPIC—Physics in neuromorphic devices Prev   Next  

Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor

Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青)
School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
Abstract  Emulation of synaptic function by ionic/electronic hybrid device is crucial for brain-like computing and neuromorphic systems. Electric-double-layer (EDL) transistors with proton conducting electrolytes as the gate dielectrics provide a prospective approach for such application. Here, artificial synapses based on indium-tungsten-oxide (IWO)-based EDL transistors are proposed, and some important synaptic functions (excitatory post-synaptic current, paired-pulse facilitation, filtering) are emulated. Two types of spike-timing-dependent plasticity (Hebbian STDP and anti-Hebbian STDP) learning rules and multistore memory (sensory memory, short-term memory, and long-term memory) are also mimicked. At last, classical conditioning is successfully demonstrated. Our results indicate that IWO-based neuromorphic transistors are interesting for neuromorphic applications.
Keywords:  neuromorphic transistors      synaptic plasticity      oxide-based semiconductors      classical conditioning  
Received:  24 August 2020      Revised:  30 September 2020      Accepted manuscript online:  15 October 2020
PACS:  81.05.Gc (Amorphous semiconductors)  
  85.30.Tv (Field effect devices)  
  87.19.lg (Synapses: chemical and electrical (gap junctions))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674162 and 61834001) and the National Key R&D Program of China (Grant Nos. 2018YFA0305800 and 2019YFB2205400).
Corresponding Authors:  Qing Wan     E-mail:  wanqing@nju.edu.cn

Cite this article: 

Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青) Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor 2021 Chin. Phys. B 30 058102

[1] Harris J, Jolivet R and Attwell D 2012 Neuron 75 762
[2] Drachman D A 2005 Neurology 64 2004
[3] Zidan M A, Strachan J P and Lu W D 2018 Nat. Electron. 1 22
[4] Burr G, Shelby R M, Sebastian A, et al. 2016 Adv. Phys. X 2 89
[5] Sarkar D, Tao J, Wang W, Lin Q, Yeung M, Ren C and Kapadia R 2018 ACS Nano 12 1656
[6] Zucker R S and Regehr W G 2002 Annu. Rev. Physiol. 64 355
[7] Voglis G and Tavernarakis N 2006 EMBO Rep. 7 1104
[8] Abbott L F, Nelson S B 2000 Nat. Neurosci. 3 1178
[9] Guo L Q, Han H, Zhu L Q, Guo Y B, Yu F, Ren Z Y, Xiao H, Ge Z Y and Ding J N 2019 ACS Appl. Mater. Interfaces 11 28352
[10] Liu Y H, Zhu L Q, Feng P, Shi Y and Wan Q 2015 Adv. Mater. 27 5599
[11] Atkinson R C and Shiffrin R M 1968 Psychol. Learn. Motiv. 2 89
[12] Zhao Y H, Liu B, Yang J L, He J and Jiang J 2020 Chin. Phys. Lett. 37 088501
[13] Mayford M, Siegelbaum S A and Kandel E R 2012 Cold Spring Harbor Perspect. Biol. 4 a005751
[14] Guo C L, Wang B B, Xia W, Guo Y F and Xue J M 2019 Chin. Phys. Lett. 36 078501
[15] Tian B B, Zhong N and Duan C G 2020 Chin. Phys. B 29 097701
[16] Yang R 2020 Chin. Phys. B 29 097305
[17] Wang S P, He C L, Tang J, Yang R, Shi D X and Zhang G Y 2019 Chin. Phys. B 28 017304
[18] Zhou E R, Fang L, Liu R L and Tang Z S 2017 Chin. Phys. B 26 118502
[19] Xue W H, Ci W J, Xu X H and Liu G 2020 Chin. Phys. B 29 048401
[20] Liu H J, Chen C L, Zhu X, Sun S Y, Li Q J and Li Z W 2020 Chin. Phys. B 29 028502
[21] Shao N, Zhang S B and Shao S Y 2017 Chin. Phys. B 26 118501
[22] Zhong H, Sun C Q, Li G, Du J Y, Huang H Y, Guo E J, He M, Wang C, Yang G Z, Ge C and Jin K J 2020 Chin. Phys. B 29 040703
[23] Guo Y B and Zhu L Q 2020 Chin. Phys. B 29 078502
[24] Zhu J D, Yang Y C, Jia R D, Liang Z X, Zhu W, Rehman Z U, Bao L, Zhang X X, Cai Y M, Song L, and Huang R 2018 Adv. Mater. 30 1800195
[25] Wang X, Ge C, Li K, Guo E J, He M, Wang C, Yang G Z and Jin K J 2020 Chin. Phys. B 29 098101
[26] Jiang J, Guo J J, Wan X, Yang Y, Xie H P, Niu D M, Yang J L, He J, Gao Y L and Wan Q 2017 Small 13 1700933
[27] Xie D D, Jiang J, Hu W N, He Y L, Yang J L, He J, Gao Y L and Wan Q 2018 ACS Appl. Mater. Interfaces 10 25943
[28] Wan C J, Liu Y H, Feng P, Wang W, Zhu L Q, Liu Z P, Shi Y and Wan Q 2016 Adv. Mater. 28 5878
[29] Liu R, Zhu L Q, Wang W, Xiao H, Liu Z P and Wan Q 2016 J. Mater. Chem. C 4 7744
[30] He Y L, Nie S, Liu R, Jiang S S, Shi Y and Wan Q 2019 Adv. Mater. 31 1900903
[31] Yang J T, Ge C, Du J Y, Huang H Y, He M, Wang C, Lu H B, Yang G Z and Jin K J 2018 Adv. Mater. 30 1801548
[32] Zhu L Q, Wan C J, Guo L Q, Shi Y and Wan Q 2014 Nat. Commun. 5 3158
[33] Deng L, Li G, Deng N, Wang D, Zhang Z, He W, Li H, Pei J and Shi L 2015 Sci. Rep. 5 10684
[34] Ziegler M, Soni R, Patelczyk T, Ignatov M, Bartsch T, Meuffels P and Kohlstedt H 2012 Adv. Funct. Mater. 22 2744
[35] Wan C J, Zhou J M, Shi Y and Wan Q 2014 IEEE Electron Device Lett. 35 414
[36] Tan Z H, Yin X B, Yang R, Mi S B, Jia C L and Guo X 2017 Sci. Rep. 7 713
[37] Hu S G, Liu Y, Liu Z, Chen T P, Yu Q, Deng L J, Yin Y and Hosaka S 2014 J. Appl. Phys. 116 214502
[38] Burgt Y, Lubberman E, Fuller E, Keene S, Faria G, Agarwal S, Marinella M, Talin A and Salleo A 2017 Nat. Mater. 16 414
[39] John R A, Tiwari N, Yaoyi C, Ankit, Tiwari N, Kulkarni M, Nirmal A, Nguyen A C, Basu A and Mathews N 2018 ACS Nano 12 11263
[40] Yu F, Zhu L Q, Xiao H, Gao W T and Guo Y B 2018 Adv. Funct. Mater. 28 1804025
[41] Wu C X, Kim T W, Guo T L, Li F S, Lee D U and Yang J J 2017 Adv. Mater. 29 1602890
[42] Chen J W, Li E L, Yan Y J, Yang Q, Cao S G, Zhong J F, Chen H P and Guo T L 2019 J. Phys. D: Appl. Phys. 52 484002
[43] Vickers E, Kim M H, Vigh J and von Gersdorff H 2012 J. Neurosci. 32 11688
[44] Indiveri G, Chicca E and Douglas R 2006 IEEE Trans. Neural Netw. 17 211
[45] Abbott L F and Regehr W G 2004 Nature 431 796
[46] Song S, Miller K D and Abbott L F 2000 Nature 3 919
[47] Caporale N and Dan Y 2008 Annu. Rev. Neurosci. 31 25
[48] Serrano G T, Masquelier T, Prodromakis T, Indiveri G and Linares-Barranco B 2013 Front. Neurosci. 7 2
[49] Nader K and Hardt O 2009 Nat. Rev. Neurosci. 10 224
[50] Atkinson R C and Shiffrin R M 1968 Psychol. Learn. Motiv. 2 89
[51] Xu D D, Deng X, Zhao Y F, Ma R R, Zhong N, Huang R, Peng H, Xiang P H and Duan C G 2019 Adv. Funct. Mater. 29 1902497
[52] Deng X, Zhao Y F, Zhong N, Yue F Y, Huang R, Peng H, Tang X D, Xiang P H, Chu Y H and Duan C G 2020 Adv. Electron. Mater. 6 1900742
[53] Mejias J F and Torres J J 2008 J. Comput. Neurosci. 24 222
[1] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[2] Artificial synaptic behavior of the SBT-memristor
Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅). Chin. Phys. B, 2021, 30(7): 078401.
[3] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[4] High-performance synaptic transistors for neuromorphic computing
Hai Zhong(钟海), Qin-Chao Sun(孙勤超), Guo Li(李果), Jian-Yu Du(杜剑宇), He-Yi Huang(黄河意), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Chen Ge(葛琛), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(4): 040703.
[5] Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor
Shuopei Wang(王硕培), Congli He(何聪丽), Jian Tang(汤建), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017304.
No Suggested Reading articles found!