Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 037802    DOI: 10.1088/1674-1056/aca393

Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6

Chaoxin Huang(黄潮欣)1,†, Benyuan Cheng(程本源)2,3,†, Yunwei Zhang(张云蔚)1, Long Jiang(姜隆)4, Lisi Li(李历斯)1, Mengwu Huo(霍梦五)1, Hui Liu(刘晖)1, Xing Huang(黄星)1, Feixiang Liang(梁飞翔)1, Lan Chen(陈岚)1, Hualei Sun(孙华蕾)1, and Meng Wang(王猛)1,‡
1 Center for Neutron Science and Technology, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China;
2 Shanghai Institute of Laser Plasma, Shanghai 201800, China;
3 Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China;
4 Instrumentation Analysis and Research Center, Sun Yat-Sen UniVersity, Guangzhou 510275, China
Abstract  We report the synthesis and characterization of a Si-based ternary semiconductor Mg3Si2Te6, which exhibits a quasi-two-dimensional structure, where the trigonal Mg2Si2Te6 layers are separated by Mg ions. Ultraviolet-visible absorption spectroscopy and density functional theory calculations were performed to investigate the electronic structure. The experimentally determined direct band gap is 1.39 eV, consistent with the value of the density function theory calculations. Our results reveal that Mg3Si2Te6 is a direct gap semiconductor, which is a potential candidate for near-infrared optoelectronic devices.
Keywords:  semiconductors      semiconductor compounds      narrow-band systems      methods of crystal growth  
Received:  31 August 2022      Revised:  28 October 2022      Accepted manuscript online:  17 November 2022
PACS:  78.40.Fy (Semiconductors)  
  71.20.Nr (Semiconductor compounds)  
  71.28.+d (Narrow-band systems; intermediate-valence solids)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174454, 11904414, 11904416, and 12104427), the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2021B1515120015), the Guangzhou Basic and Applied Basic Research Foundation (Grant No. 202201011123), and the National Key Research and Development Program of China (Grant No. 2019YFA0705702).
Corresponding Authors:  Chaoxin Huang, Benyuan Cheng, Meng Wang     E-mail:

Cite this article: 

Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛) Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6 2023 Chin. Phys. B 32 037802

[1] Elliott C T 1998 Infrared Technology and Applications XXIV (San Diego: SPIE) pp. 763-775
[2] Maier H and Hesse J 1980 Organic Crystals, Germanates, Semiconductors 4 145
[3] Bauer G and Clemens H 1990 Semicond. Sci. Technol. 5 S122
[4] Xie L, Wang J, Li J, Li C, Zhang Y, Zhu B P, Guo Y Z, Wang Z C and Zhang K 2021 Adv. Electron. Mater. 7 2000962
[5] Zhang H D, Liu H Y, Wei K Y, Kurakevych O O, Le Godec Y, Liu Z X, Martin J, Guerrette M, Nolas G S and Strobel T A 2017 Phys. Rev. Lett. 118 146601
[6] Ripka P, and Janosek M 2010 IEEE Sensors Journal 10 1108
[7] Heremans J, Partin D L, Thrush C M and Green L 1993 Semiconductor Science and Technology 8 S424
[8] Solin S A, Thio T, Hines D R and Heremans J J 2000 American Association for the Advancement of Science 289 1530
[9] Berus T, Oszwaldowski M and Grabowski J 2004 Sensors and Actuators A: Physical 116 75
[10] Mihajlović G, Xiong P, Von Molnár S, Ohtani K, Ohno H, Field M and Sullivan G J 2005 Appl. Phys. Lett. 87 112502
[11] Cheng P and Yang Y 2020 Accounts of Chemical Research 53 1218
[12] Zheng J Y, Zhou H J, Zou Y Q, Wang R L, Lyu Yan H and Wang S Y 2019 Energy & Environmental Science 12 2345
[13] Tournie E and Baranov A N 2012 Semiconductors and Semimetals 86 183
[14] Harman T C and Melngailis I 1974 Applied Solid State Science (Amsterdam: Elsevier) pp. 1-94
[15] Downs C and Vandervelde T E 2013 Sensors 13 5054
[16] Martyniuk P and Rogalski A 2008 Progress in Quantum Electronics 32 89
[17] Chen W, Deng Z, Guo D Q, Chen Y J, Mazur Y I, Maidaniuk Y, Benamara M, Salamo G J, Liu H Y, Wu J and Chen B L 2018 Journal of Lightwave Technology 36 2572
[18] Pasquini C 2003 Journal of the Brazilian Chemical Society 14 198
[19] Li J C and Pu K Y 2003 Chem. Soc. Rev. 48 38
[20] Mei L Y, Huang R F, Shen C R, Hu J G, Wang P, Xu Z J, Huang Z F and Zhu L 2003 Adv. Opt. Mater. 10 2102656
[21] Rogalski A 2005 Reports on Progress in Physics 68 2267
[22] Lei W, Antoszewski J and Faraone L 2015 Appl. Phys. Rev. 2 041303
[23] Piotrowski J and Rogalski A 2004 Infrared Physics & Technology 46 115
[24] Piotrowski J and Rogalski A 1998 Sensors and Actuators A: Physical 67 146
[25] Jiao H X, Wang X D, Chen Y, Guo S F, Wu S Q, Song C Y, Huang S Y, Huang X N, Tai X C, Lin T, Shen H, Yan H, Hu W D, Meng X J, Chu J H, Zhang Y B and Wang J L 2022 Science Advances 8 eabn1811
[26] Yang S H, Peng J H, Huang H F, Li Z X, Dong H F and Wu F G 2022 Materials Science in Semiconductor Processing 144 106552
[27] Yin J J, Wu C W, Li L S, Yu J, Sun H L, Shen B, Frandsen B A, Yao D X and Wang M 2020 Phys. Rev. Materials 4 013405
[28] Sun H L, Chen C Q, Hou Y S, Wang W L, Gong Y, Huo M W, Li L S, Yu J, Cai W P, Liu N T, Wu R Q, Yao D X and Wang M 2021 Sci. China: Phys. Mech. Astron. 64 118211
[29] Li L S, Hu X W, Liu Z J, Yu J, Cheng B Y, Deng S H, He L H, Cao K, Yao D X and Wang M 2021 Sci. China: Phys. Mech. Astron. 64 287412
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Vargas Hernández R A 2020 J. Phys. Chem. A 124 4053
[32] Carteaux V, Brunet D, Ouvrard G and Andre G 1995 J. Phys.: Condens. Matter 7 69
[33] Cai W P, Sun H L, Xia W, Wu C W, Liu Y, Liu H, Gong Y, Yao D X, Guo Y F and Wang M 2020 Phys. Rev. B 102 144525
[34] Vincent H, Leroux D, Bijaoui D, Rimet R and Schlenker C 1986 Journal of Solid State Chemistry 63 349
[35] May A F, Cao H B and Calder S 2020 J. Magn. Magnet. Mater. 511 166936
[36] Ni Y F, Zhao H D, Zhang Y, Hu B, Kimchi I and Cao G 2021 Phys. Rev. B 103 L161105
[37] Seo J, De C, Ha H, Lee J E, Park S, Park J, Skourski Y, Choi E S, Kim B and Cho G Y, Yeom H W, Cheong S W, Kim J H, Yang B J, Kim K and Kim J S 2021 Nature 599 576
[38] Wang Z, Xia H, Wang P, et al. 2021 Adv. Mater. 33 2104942
[39] Chen J W, Li L, Gong P L, Zhang H L, Yin S Q, Li M, Wu L F, Gao W S, Long M S, Shan L, Yan F, and Li G H 2022 ACS Nano 16 7745
[40] Sarkar A, Loho C, Velasco L, Thomas T, Bhattacharya S S, Hahn H, and Djenadic R 2017 Dalton Transactions 46 12167
[41] Tauc J, Grigorovici R and Vancu A 1966 Physica Status Solidi (b) 15 627
[1] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[2] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[3] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[4] Synaptic plasticity and classical conditioning mimicked in single indium-tungsten-oxide based neuromorphic transistor
Rui Liu(刘锐), Yongli He(何勇礼), Shanshan Jiang(姜珊珊), Li Zhu(朱力), Chunsheng Chen(陈春生), Ying Zhu(祝影), and Qing Wan(万青). Chin. Phys. B, 2021, 30(5): 058102.
[5] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[6] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[7] Oxygen vacancy control of electrical, optical, and magnetic properties of Fe0.05Ti0.95O2 epitaxial films
Qing-Tao Xia(夏清涛), Zhao-Hui Li(李召辉), Le-Qing Zhang(张乐清), Feng-Ling Zhang(张凤玲), Xiang-Kun Li(李祥琨), Heng-Jun Liu(刘恒均), Fang-Chao Gu(顾方超), Tao Zhang(张涛), Qiang Li(李强), and Qing-Hao Li(李庆浩). Chin. Phys. B, 2021, 30(11): 117701.
[8] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[9] Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning
Zhen Zhu(朱震), Baojuan Dong(董宝娟), Huaihong Guo(郭怀红), Teng Yang(杨腾), Zhidong Zhang(张志东). Chin. Phys. B, 2020, 29(4): 046101.
[10] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[11] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[12] First-principles study of the band gap tuning and doping control in CdSexTe1-x alloy for high efficiency solar cell
Jingxiu Yang(杨竞秀), Su-Huai Wei(魏苏淮). Chin. Phys. B, 2019, 28(8): 086106.
[13] Polarized red, green, and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer
Haoran Zhang(张皓然), Qi Zhang(张琪), Qian Zhang(张茜), Huizhi Sun(孙汇智), Gang Hai(海港), Jing Tong(仝静), Haowen Xu(徐浩文), Ruidong Xia(夏瑞东). Chin. Phys. B, 2019, 28(7): 078108.
[14] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
[15] Theoretical investigation of optical properties and band gap engineering for Zn1-xTMxTe(TM=Fe, Co) alloys by modified Becke—Johnson potential
Q Mahmood, M Yaseen, M Hassan, Shahid M Ramay, Asif Mahmood. Chin. Phys. B, 2017, 26(8): 087803.
No Suggested Reading articles found!