Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 030701    DOI: 10.1088/1674-1056/ac3ec9
GENERAL Prev   Next  

Finite element simulation of Love wave sensor for the detection of volatile organic gases

Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫)
College of Electronic and Optical Engineering&College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210046, China
Abstract  The three-dimensional (3D) finite element (FE) simulation and analysis of Love wave sensors based on polyisobutylene (PIB) layers/SiO$_{2}$/ST-90$^\circ$X quartz structure are presented in this paper, as well as the investigation of coupled resonance effect on the acoustic properties of the devices. The mass sensitivity of the basic Love wave device with SiO$_{2}$ guiding layers is solved analytically. And the highest mass sensitivity of 128 m$^{2}$/kg is obtained as $h_{\rm s}/\lambda =0.175$. The sensitivity of the Love wave sensors for sensing volatile organic compounds (VOCs) is greatly improved due to the presence of coupled resonance induced by the PIB nanorods on the device surface. The frequency shifts of the sensor corresponding to CH$_{2}$Cl$_{2}$, CHCl$_{3}$, CCl$_{4}$, C$_{2}$Cl$_{4}$, CH$_{3}$Cl and C$_{2}$HCl$_{3}$ with the concentration of 100 ppm are 1.431 kHz, 5.507 kHz, 13.437 kHz, 85.948 kHz, 0.127 kHz and 17.879 kHz, respectively. The viscoelasticity influence of the sensitive material on the characteristics of SAW sensors is also studied. By taking account of the viscoelasticity of the PIB layers, the sensitivities of the SAW sensors with the PIB film and PIB nanorods decay in different degree. The gas sensing property of the Love wave sensor with PIB nanorods is superior to that of the PIB films. Meanwhile, the Love wave sensors with PIB sensitive layers show good selectivity to C$_{2}$Cl$_{4}$, making it an ideal selection for gas sensing applications.
Keywords:  gas sensor      coupled resonance      nano-structure      Love wave  
Received:  25 January 2021      Revised:  13 October 2021      Accepted manuscript online:  01 December 2021
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  68.35.Iv (Acoustical properties)  
  77.65.Dq (Acoustoelectric effects and surface acoustic waves (SAW) in piezoelectrics)  
Fund: Project supported by the Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY213018).
Corresponding Authors:  Yan Wang     E-mail:

Cite this article: 

Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫) Finite element simulation of Love wave sensor for the detection of volatile organic gases 2022 Chin. Phys. B 31 030701

[1] Wang H L, Nie L, Li J, Wang Y F, Wang G, Wang J H and Hao Z P 2013 Chin. Sci. Bull. 58 724
[2] Geng F H, Tie X X, Xu J M, Zhou G Q, Peng L, Gao W, Tang X and Zhao C S 2008 Atmos. Environ. 42 6873
[3] Shao M, Zhang Y H, Zeng L M, Tang X Y, Zhang J, Zhong L J and Wang B G 2009 J. Environ. Manage. 90 512
[4] Mirzaei A, Leonardi S G and Neri G 2016 Ceram. Int. 42 15119
[5] Hempel-Jorgensen A, Kjaergaard S K, Molhave L and Hudnell K H 1999 Arch. Environ. Health 54 416
[6] Pawar D, Kanawade R, Kumar A, Rao C N, Cao P J, Gaware S, Late D, Kale S N, Navale S T, Liu W J, Zhu D L, Lu Y M and Sinha R K 2020 Sens. Actuator B-Chem. 312 127921
[7] Kumar P, Deep A, Kim K and Brown R J C 2015 Prog. Polym. Sci. 45 102
[8] Lu F, Liu Y, Dong M and Wang X P 2000 Sens. Actuator B-Chem. 66 225
[9] Huang J R, Wu Y J, Gu C P, Zhai M H, Sun Y F and Liu J H 2011 Sens. Actuator B-Chem. 155 126
[10] Devkota J, Ohodnicki P R and Greve D W 2017 Sensors 17 801
[11] Gronewold T M A 2007 Anal. Chim. Acta 603 119
[12] Wohltjen H 1984 Sens. Actuator 5 307
[13] Yang M S and Thompson M 1993 Analytica Chimica Acta 282 505
[14] Wang W, He S T, Li S Z, Liu M H and Pan Y 2007 Sens. Actuator B-Chem. 125 422
[15] Zheng L, Liu T, Hu H and Li T L 2008 3$rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Janusry 6-9, 2008, Sanya, China, p. 462
[16] Trivedi S and Nemade H B 2018 Ultrasonics 84 150
[17] Jakoby B, Ismail G M, Byfield M P and Vellekoop M J 1999 Sens. Actuator A-Phys. 76 93
[18] Youssef I B, Alem H, Sarry F, Elmazria O, Rioboo R J and Arnal-Hérault 2013 Sens. Actuator B-Chem. 185 309
[19] Zimmermann C, Rebiére D, Déjous C, Pistré J, Chastaing E and Planade R 2001 Sens. Actuator B-Chem. 76 86
[20] Branch D W and Brozik S M 2004 Biosens.Bioelectron. 19 849
[21] Zhang X, Fang J R, Zou L, Zou Y C, Lang L, Gao F, Hu N and Wang P 2016 Biosens. Bioelectron. 77 573
[22] Zou L, Tian Y L, Zhang X, Fang J R, Hu N and Wang P 2017 Sens. Actuator B-Chem. 238 1173
[23] Gizeli E, Bender F, Rasmusson A, Saha K, Josse F and Cernosek R 2003 Biosens. Bioelectron. 18 1399
[24] Ruppel C C W, Ruile W, Scholl G, Wagner K C and Manner O 1994 Ultrasonics Symposium, October 31-November 3, 1994, Cannes, France, p. 413
[25] Robinson H, Hahn Y and Gau J N 1989 J. Appl. Phys. 65 4573
[26] Aslam M Z, Jeoti V, Karuppanan S, Malik A F and Iqbal A 2018 Sensors 18 1687
[27] Trivedi S and Nemade H B 2018 Microsyst. Technol. 24 3537
[28] Plessky V and Koskela J 2000 Int. J. High Speed Electron. Syst. 10 867
[29] Du J, Harding G L, Ogilvy J A, Dencher P R and Lake M 1996 Sens. Actuator A-Phys. 56 211
[30] Johnson S and Shanmuganantham D T 2013 J. Micro/Nanolithogr., MEMS, MOEMS 12 013019
[32] Ho C K, Lindgren E R, Rawlinson K S, Mcgrath L K and Wright J L 2003 Sensors 3 236
[33] Greate J W and Patrash S J 1995 Anal. Chem. 67 2162
[34] Caliendo C and Hamidullah M 2017 J. Phys. D-Appl. Phys. 50 474002
[35] Xu X 2019 Study on the characteristics of surface acoustic wave devices based on graphene oxide films (MS Thesis) (Nanjing:Nanjing University of Posts and Telecommunications) (in Chinese)
[1] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[2] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[3] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[4] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[5] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[6] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[7] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[8] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[9] Room temperature NO2-sensing properties of hexagonal tungsten oxide nanorods
Yaqiao Wu(武雅乔), Ming Hu(胡明), Yuming Tian(田玉明). Chin. Phys. B, 2017, 26(2): 020701.
[10] Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation
Shuang Li(李爽), Ming Chen(陈明). Chin. Phys. B, 2016, 25(4): 046103.
[11] Controllable synthesis of ultrathin vanadium oxide nanobelts via an EDTA-mediated hydrothermal process
Yu-Xiang Qin(秦玉香), Cheng Liu(刘成), Wei-Wei Xie(谢威威), Meng-Yang Cui(崔梦阳). Chin. Phys. B, 2016, 25(2): 027307.
[12] Morphology-controlled preparation of tungsten oxide nanostructures for gas-sensing application
Qin Yu-Xiang (秦玉香), Liu Chang-Yu (刘长雨), Liu Yang (柳杨). Chin. Phys. B, 2015, 24(2): 027304.
[13] Excellent acetone sensing properties of porous ZnO
Liu Chang-Bai (刘唱白), Liu Xing-Yi (刘星熠), Wang Sheng-Lei (王圣蕾). Chin. Phys. B, 2015, 24(1): 018503.
[14] High sensitivity gravimetric sensor made of unidirectional carbon fiber epoxy composite on (1-x)Pb(Zn1/3Nb2/3)O3- xPbTiO3 single crystal substrate
Huang Nai-Xing (黄乃兴), Lü Tian-Quan (吕天全), Zhang Rui (张锐), Cao Wen-Wu (曹文武). Chin. Phys. B, 2014, 23(11): 117704.
[15] Chemical synthesis of zinc oxide nanorods for enhanced hydrogen gas sensing
Musarrat Jabeen, Muhammad Azhar Iqbal, R Vasant Kumar, Mansoor Ahmed, Muhammad Tayyeb Javed. Chin. Phys. B, 2014, 23(1): 018504.
No Suggested Reading articles found!