|
|
In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature |
Jing-Yue Xuan(宣景悦)1,†, Guo-Dong Zhao(赵国栋)1,†, Xiao-Bo Shi(史小波)2, Wei Geng(耿伟)1, Heng-Zheng Li(李恒征)1, Mei-Ling Sun(孙美玲)1, Fu-Chao Jia(贾福超)1, Shu-Gang Tan(谭树刚)1, Guang-Chao Yin(尹广超)1,‡, and Bo Liu(刘波)1,§ |
1 Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China; 2 Institute of Artificial Intelligence, Henan Finance University, Zhengzhou 450046, China |
|
|
Abstract The zinc oxide (ZnO) nanoparticles (NPs) sensors were prepared in-situ on the gas-sensing electrodes by a one-step simple sol-gel method for the detection of hydrogen sulfide (H2S) gas. The sphere-like ZnO NPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray analysis (EDX), and their H2S sensing performance were measured at room temperature. Testing results indicate that the ZnO NPs exhibit excellent response to H2S gas at room temperature. The response value of the optimal sample to 750 ppb H2S is 73.3%, the detection limit reaches to 30 ppb, and the response value is 7.5%. Furthermore, the effects of the calcining time and thickness of the film on the gas-sensing performance were investigated. Both calcining time and film thickness show a negative correlation with the H2S sensing performance. The corresponding reaction mechanism of H2S detection was also discussed.
|
Received: 03 September 2020
Revised: 02 November 2020
Accepted manuscript online: 01 December 2020
|
PACS:
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
77.55.hf
|
(ZnO)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904209 and 61904098), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019QF018), and Higher Education Research and Development Program of Shandong Province, China (Grant No. J18KA242). |
Corresponding Authors:
†These authors contributed equally to the work. ‡Corresponding author. E-mail: yingc@sdut.edu.cn §Corresponding author. E-mail: liub@sdut.edu.cn
|
Cite this article:
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波) In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature 2021 Chin. Phys. B 30 020701
|
1 Sett D and Basak D 2016 Sens. Actuators B. Chem. 243 475 2 Broza Y Y, Zhou X, Yuan M, Qu D, Zheng Y, Vishinkin R, Khatib M, Wu W and Haick H 2019 Chem. Rev. 119 11761 3 Hu W, Wan L, Jian Y, Ren C, Jin K, Su X, Bai X, Haick H, Yao M and Wu W 2019 Adv. Mater. Technol. 4 1800488 4 Zhao G, Sun M, Liu X, Xuan J, Kong W, Zhang R, Sun Y, Jia F, Yin G and Liu B 2019 Electrochim. Acta 304 334 5 Lupan O, Postica V, Labat F, Ciofini I, Pauporté T and Adelung R 2018 Sens. Actuators B. Chem. 254 1259 6 Yang T, Jin W, Liu Y, Li H, Yang S and Chen W 2018 Appl. Surf. Sci. 457 975 7 Chitra M, Uthayarani K, Rajasekaran N, Neelakandeswari N, Girija E K and Pathinettam Padiyan D 2015 Chin. Phys. Lett. 32 078101 8 Sun M, Liu X, Zhao G, Kong W, Xuan J, Tan S, Sun Y, Wei S, Ren J and Yin G 2019 J. Power Source 430 80 9 Zhao G, Xuan J, Liu X, Jia F, Sun Y, Sun M, Yin G and Liu B 2019 Nanomaterials 9 435 10 Na H B, Zhang X F, Deng Z P, Xu Y M, Huo L H and Gao S 2019 ACS Appl. Mater. Interfaces 11 11627 11 Li S, Liu A, Yang Z, Zhao L, Wang J, Liu F, You R, He J, Wang C, Yan X, Sun P, Liang X and Lu G 2019 Sens. Actuators B. Chem. 289 252 12 Wu Y, Hu M and Tian Y 2017 Chin. Phys. B 26 020701 13 Zhao G, Xuan J, Gong Q, Wang L, Ren J, Sun M, Jia F, Yin G and Liu B 2020 ACS Appl. Mater. Interfaces 12 8573 14 Li X, Qin L, Zhang J, Ren M, An J, Yang X and Xu X 2017 Chin. Phys. Lett. 34 034211 15 Zhang Y, Xie L, Li H, Wang P, Liu S, Peng Y and Zhang M 2015 Chin. Phys. Lett. 32 098103 16 Wang S, Jia F, Wang X, Hu L, Sun Y, Yin G, Zhou T, Feng Z, Kumar P and Liu B 2020 ACS Omega 5 5209 17 Hosseini Z S, Mortezaali A, Iraji zad A and Fardindoost S 2015 J. Alloys Compd. 628 222 18 Zhu L and Zeng W 2017 Sens. Actuators, A Phys. 267 242 19 Mourad S, Ghoul J EI, Omri K and Khirouni K 2019 Chin. Phys. B 28 047701 20 Ma Q, Wang H, Zhang S, Chen X and Wang T 2019 Acta Phys. Sin. 68 158501 (in Chinese) 21 Liu X, Du B, Sun Y, Yu M, Yin Y, Tang W, Chen C, Sun L, Yang B and Cao W Ashfold M N R 2016 ACS Appl. Mater. Interfaces 8 16379 22 Vuong N M, Chinh N D, Hien T T, Quang N D, Kim D, Kim H, Yoon S G and Kim D 2016 J. Nanosci. Nanotechnol. 16 10346 23 Patil V L, Vanalakar S A, Patil P S and Kim J H 2017 Sens. Actuators B. Chem. 239 1185 24 Deng J, Fu Q, Luo W, Tong X, Xiong J, Hu Y and Zheng Z 2016 Sens. Actuators, B Chem. 224 153 25 Zhai J, Wang L, Wang D, Li H, Zhang Y, He D and Xie T 2011 ACS Appl. Mater. Interfaces 3 2253 26 Cao J, Dou H, Zhang H, Mei H, Liu S, Fei T, Wang R, Wang L and Zhang T 2014 Sens. Actuators B Chem. 198 180 27 Hieu H N, Vuong N M, Jung H, Jang D M, Kim D, Kim H and Hong S K 2012 J. Mater. Chem. 22 1127 28 Ahn M W, Park K S, Heo J H, Park J G, Kim D W, Choi K J, Lee J H and Hong S H 2008 Appl. Phys. Lett. 93 263103 29 Deng J, Fu Q and Luo W 2016 Sens. Actuators B: Chem 224 153 30 Huang H, Xu P and Zheng D 2015 J. Mater. Chem. A 3 6330 31 Kaur M, Ganapathi K, Mukund V, Jain C, Ramgir N, Datta N, Bhattacharya S, Debnath A, Aswal D and Gupta S 2014 Mater. Chem. Phys. 143 1319 32 Meng F, Zhao G and Zhang H 2013 Nanosci. Nanotechnol. Lett. 5 1012 33 Feng P, Wan Q and Wang T H 2009 Appl Phys. Lett. 87 213111 34 Lee H, Ahn K, Lee S, Kim J, Kim H, Jeong S and Cho C 2011 Appl. Phys. Lett. 98 193114 35 Kokes R J 1962 J. Phys. Chem. 66 99 36 Tench A J and Lawson T 1971 Chem. Phys. Lett. 8 177 37 Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y and Cao M S 2020 Phys. Lett. A 384 126106 38 Li Y Y, Gong P and Fang X Y 2020 Chin. Phys. B 29 037304 39 Tong X, Shen W, Chen X and Corriou J P 2017 Ceram. Int. 43 14200 40 Kwon Y, Kim H, Lee S, Chin I J, Seong T Y, Lee W I and Lee C 2012 Sens. Actuators B Chem. 173 441 41 Barsan N and Weimar U 2001 J. Electroceramics. 7 143 42 Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H and Cao M S 2018 Physica E 104 247 43 Mani G K and Rayappan J B B 2015 Mater. Lett. 158 373 44 Nimbalkar A R and Patil M G 2017 Physica B 527 7 45 Wang D, Chu X and Gong M 2007 Nanotechnology 18 185601 46 Kim J and Yong K 2011 J. Phys. Chem. C 115 7218 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|