Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 117401    DOI: 10.1088/1674-1056/ac834a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method

Hong-Lin Zhou(周宏霖)1,2,†, Yu-Hao Zhang(张与豪)3,†, Yang Li(李阳)1,2, Shi-Liang Li(李世亮)1,2,4, Wen-Shan Hong(洪文山)1,2,5,‡, and Hui-Qian Luo(罗会仟)1,4,§
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Advanced Engineering, University of Science and Technology Beijing, Beijing 100083, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China;
5 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
Abstract  High-quality superconducting Ca$_{1-x}$Na$_x$Fe$_2$As$_2$ single crystals have been successfully grown by the NaAs-flux method, with sodium doping level $x = 0.4$-0.64. The typical sizes of these crystals are more than 10 mm in $ab$-plane and $\sim 0.1$ mm along $c$-axis in thickness. X-ray diffraction, resistance and magnetization measurements are carried out to characterize the quality of these crystals. While no signature of magnetic phase transitions is detected in the normal state, bulk superconductivity is found for these samples, with a sharp transition at $T_{\rm c}$ ranging from 19.8 K ($x = 0.4$) to 34.8 K ($x = 0.64$). The doping dependences of the $c$-axis parameter and $T_{\rm c}$ are consistent with previous reports, suggesting a possible connection between the lattice parameters and superconductivity.
Keywords:  iron-based superconductors      crystal growth      flux method  
Received:  23 June 2022      Revised:  12 July 2022      Accepted manuscript online:  22 July 2022
PACS:  74.25.-q (Properties of superconductors)  
  74.25.Dw (Superconductivity phase diagrams)  
  74.70.-b (Superconducting materials other than cuprates)  
  74.25.F- (Transport properties)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0704200), the National Natural Science Foundation of China (Grant Nos. 11822411 and 11961160699), the Strategic Priority Research Program (B) of the CAS (Grants Nos. XDB25000000 and XDB33000000), the K. C. Wong Education Foundation (Grant No. GJTD-2020-01), the Youth Innovation Promotion Association of CAS (Grant No. Y202001), the Postdoctoral Innovative Talent program (Grant No. BX2021018), and the China Postdoctoral Science Foundation (Grant No. 2021M700250).
Corresponding Authors:  Wen-Shan Hong, Hui-Qian Luo     E-mail:  wenshanhong@pku.edu.cn;hqluo@iphy.ac.cn

Cite this article: 

Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟) Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method 2022 Chin. Phys. B 31 117401

[1] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[2] Gu Q and Wen H H 2022 The Innovation 3 100202
[3] Zhou X, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P and Eremets M 2021 Nat. Rev. Phys. 3 462
[4] Chen X H, Dai P, Feng D, Xiang T and Zhang F 2014 Nat. Sci. Rev. 1 371
[5] Si Q, Yu R and Abrahams E 2016 Nat. Rev. Mater. 1 16017
[6] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[7] White B D, Thompson J D and Maple M B 2015 Physica C 514 246
[8] Wu W, Zhang X D, Yin Z H, Zheng P, Wang N L and Luo J L 2010 Sci. China Phys. Mech. Astron. 53 1207
[9] Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y and Luo J L 2014 Nat. Commun. 5 5508
[10] Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L and Uwatoko Y 2015 Phys. Rev. Lett. 114 117001
[11] Liu Z Y, Dong Q X, Yang P T, Shan P F, Wang B S, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Dong X L, Zhao Z X and Cheng J G 2022 Phys. Rev. Lett. 128 187001
[12] Yang P T, Dong Q X, Shan P F, Liu Z Y, Sun J P, Dun Z L, Uwatoko Y, Chen G F, Wang B S and Cheng J G 2022 Chin. Phys. Lett. 39 067401
[13] Tranquada J M, Xu G and Zaliznyak I A 2014 J. Magn. Magn. Mater. 350 148
[14] Stewart G R 2011 Rev. Mod. Phys. 83 1589
[15] Dai P 2015 Rev. Mod. Phys. 87 855
[16] Gong D and Luo H 2018 Acta Phys. Sin. 67 207407 (in Chinese)
[17] Luo H Q 2017 Chin. Sci. Bull. 62 3955
[18] Gong D et al. 2022 Front. Phys. 10 886459
[19] Wen J S, Xu G Y, Gu G D, Tranquada J M and Birgeneau R J 2011 Rep. Prog. Phys. 74 124503
[20] Jiang H, Sun Y L, Xu Z A and Cao G H 2013 Chin. Phys. B 22 087410
[21] Xie T, Liu C, Fennell T, Stuhr U, Li S L and Luo H Q 2021 Chin. Phys. B 30 127402
[22] Zhang C et al. 2022 Sci. China Phys. Mech. Astron. 65 237411
[23] Hosono H and Kuroki K 2015 Physica C 514 399
[24] Quebe P, Terbüchte L J and Jeitschko W 2000 J. Alloys Compounds 302 70
[25] Zhigadlo N D, Katrych S, Bukowski Z and Karpinski J 2008 J. Phys.: Condens. Matter 20 342202
[26] Fang L, Cheng P, Jia Y, Zhu X Y, Luo H Q, Mu G, Gu C Z and Wen H H J. Cryst. Growth 311 358
[27] Jia Y, Cheng P, Fang L, Luo H Q, Yang H, Ren C, Shan L, Gu C Z and Wen H H 2008 Appl. Phys. Lett. 93 032503
[28] Luo H Q, Cheng P, Wang Z S, Yang H, Jia Y, Fang L, Ren C, Shan L and Wen H H 2009 Physica C 469 477
[29] Ni N, Bud'ko S L, Kreyssig A, Nandi S, Rustan G E, Goldman A I, Gupta S, Corbett J D, Kracher A and Canfield P C 2008 Phys. Rev. B 78 014507
[30] Chen G F, Li Z, Dong J, Li G, Hu W Z, Zhang X D, Song X H, Zheng P, Wang N L and Luo J L 2008 Phys. Rev. B 78 224512
[31] Ronning F, Klimczuk T, Bauer E D, Volz H and Thompson J D 2008 J. Phys.: Condens. Matter 20 322201
[32] Yan J Q et al. 2008 Phys. Rev. B 78 024516
[33] Luo H, Wang Z, Yang H, Cheng P, Zhu X and Wen H H 2008 Supercond. Sci. Technol. 21 125014
[34] Chen Y, Lu X, Wang M, Luo H and Li S 2011 Supercond. Sci. Technol. 24 065004
[35] Zhang R, Gong D, Lu X, Li S, Dai P and Luo H 2014 Supercond. Sci. Technol. 27 115003
[36] Chen G F, Hu W Z, Luo J L and Wang N L 2009 Phys. Rev. Lett. 102 227004
[37] Wang M et al. 2011 Phys. Rev. B 83 220515
[38] Xing X Z, Zhou W, Zhou N, Yuan F F, Pan Y Q, Zhao H J, Xu X F and Shi Z X 2016 Supercond. Sci. Technol. 29 055005
[39] Xie T, Gong D, Zhang W, Gu Y, Huesges Z, Chen D, Liu Y, Hao L, Meng S, Lu Z, Li S and Luo H 2017 Supercond. Sci. Technol. 30 095002
[40] Xie T, Gong D, Ghosh H, Ghosh A, Soda M, Masuda T, Itoh S, Bourdarot F, Regnault L P, Danilkin S, Li S and Luo H 2018 Phys. Rev. Lett. 120 137001
[41] Luo X and Chen X 2015 Sci. China Mater. 58 77
[42] Meier W R, Kong T, Bud'ko S L and Canfield P C 2017 Phys. Rev. Mater. 1 013401
[43] Xie T, Wei Y, Gong D, Fennell T, Stuhr U, Kajimoto R, Ikeuchi K, Li S, Hu J and Luo H 2018 Phys. Rev. Lett. 120 267003
[44] Yan J Q et al. 2015 Phys. Rev. B 91 024501
[45] Iyo A, Kawashima K, Ishida S, Fujihisa H, Gotoh Y, Eisaki H and Yoshida Y 2018 J. Am. Chem. Soc. 140 369
[46] Yan J Q et al. 2009 Appl. Phys. Lett. 95 222504
[47] Yan J Q, Jensen B, Dennis K W, McCallum R W and Lograsso T A 2011 Appl. Phys. Lett. 98 072504
[48] Ma Y H, Zhang H, Gao B, Hu K K, Ji Q C, Mu G, Huang F Q and Xie X M 2015 Supercond. Sci. Technol. 28 085008
[49] Ma M W, Ruan B B, Zhou M H, Gu Y D, Yang Q S, Sun J N and Ren Z A 2022 J. Cryst. Growth 585 126562
[50] Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M and Cao G H 2016 J. Am. Chem. Soc. 138 7856
[51] Wang Z C, He C Y, Tang Z T, Wu S Q and Cao G H 2017 Sci. China Mater. 60 83
[52] Wang T, Chu J N, Feng J X, Wang L L, Xu X G, Li W, Wen H H, Liu X S and Mu G 2020 Sci. China Phys. Mech. Astron. 63 297412
[53] Hong W, Song L, Liu B, Li Z, Zeng Z, Li Y, Wu D, Sui Q, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J, Zhao L, Zhou X, Qiu X, Li S and Luo H 2020 Phys. Rev. Lett. 125 117002
[54] Yi X L, Li M, Xing X Z, Meng Y, Zhao C Y and Shi Z X 2020 New J. Phys. 22 073007
[55] Liu Y, Tanatar M Z, Straszheim W E, Jensen B, Dennis K W, McCallum R W, Kogan V G, Prozorov R and Lograsso T A 2014 Phys. Rev. B 89 134504
[56] Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G and Chen X H 2008 Phys. Rev. Lett. 101 257003
[57] Krellner C, Caroca-Canales N, Jesche A, Rosner H, Ormeci A and Geibel C 2008 Phys. Rev. B 78 100504
[58] Goldman A I, Argyriou D N, Ouladdiaf B, Chatterji T, Kreyssig A, Nandi S, Ni N, Bud'ko S L, Canfield P C and McQueeney R J 2008 Phys. Rev. B 78 100506
[59] Gong D L, Liu Z Y, Gu Y H, Xie T, Ma X Y, Luo H Q, Yang Y F and Li S L 2017 Phys. Rev. B 96 104514
[60] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[61] Goko T et al. 2009 Phys. Rev. B 80 024508
[62] Zhao K, Liu Q Q, Wang X C, Deng Z, Lv Y X, Zhu J L, Li F Y and Jin C Q 2011 Phys. Rev. B 84 184534
[63] Shinohara N, Tokiwa K, Fujihisa H, Gotoh Y, Ishida S, Kihou K, Lee C H, Eisaki H, Yoshida Y and Iyo A 2015 Supercond. Sci. Technol. 28 062001
[64] Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004
[65] Li L J et al. 2009 New J. Phys. 11 025008
[66] Ni N, Thaler A, Yan J Q, Kracher A, Colombier E, Bud'ko S L, Canfield P C and Hannahs S T 2010 Phys. Rev. B 82 024519
[67] Canfield P C, Bud'ko S L, Ni N, Yan J Q and Kracher A 2009 Phys. Rev. B 80 060501(R)
[68] Ni N, Thaler A, Kracher A, Yan J Q, Bud'ko S L and Canfield P C 2009 Phys. Rev. B 80 024511
[69] Han F et al. 2009 Phys. Rev. B 80 024506
[70] Kirshenbaum K, Saha S R, Drye T and Paglione J 2010 Phys. Rev. B 82 144518
[71] Lv B, Deng L Z, Gooch M, Wei F Y, Sun Y Y, Meen J K, Xue Y Y, Lorenz B and Chu C W 2011 Proc. Natl Acad. Sci. USA 108 15705
[72] Jiang S, Xing H, Xuan G F, Wang C, Ren Z, Feng C, Dai J H, Xu Z A and Cao G H 2009 J. Phys.: Condens. Matter 21 382203
[73] Kasahara S, Shibauchi T, Hashimoto K, Ikada K, Tonegawa S, Okazaki R, Shishido H, Ikeda H, Takeya H, Hirata K, Terashima T and Matsuda 2010 Phys. Rev. B 81 184519
[74] Thaler A, Ni N, Kracher A, Yan J Q, Bud'ko S L and Canfield P C 2010 Phys. Rev. B 82 014534
[75] Shirage P M, Miyazawa K, Kito H, Eisaki H and Iyo A 2008 Appl. Phys. Exp. 1 081702
[76] Zhao K, Liu Q Q, Wang X C, Deng Z, Lv Y X, Zhu J L, Li F Y and Jin C Q 2010 J. Phys.: Condens. Matter 22 222203
[77] Ma J Q, Luo X G, Cheng P, Zhu N, Liu D Y, Chen F, Ying J J, Wang A F, Lu X F, Lei B and Chen X H 2014 Phys. Rev. B 85 174512
[78] Pratt D K, Kim M G, Kreyssig A, Lee Y B, Tucker G S, Thaler A, Tian W, Zarestky J L, Bud'ko S L, Canfield P C, Harmon B N, Goldman A I and McQueeney R J 2011 Phys. Rev. Lett. 106 257001
[79] Luo H Q, Zhang R, Laver M, Yamani Z, Wang M, Lu X Y, Wang M Y, Chen Y C, Li S L, Chang S, Lynn J W and Dai P C 2012 Phys. Rev. Lett. 108 247002
[80] Kim M G, Lamsal J, Heitmann T W, Tucker G S, Pratt D K, Khan S N, Lee Y B, Alam A, Thaler A, Ni N, Ran S, Bud'ko S L, Marty K J, Lumsden M D, Canfield P C, Harmon B N, Johnson D D, Kreyssig A, McQueeney R J and Goldman A I 2012 Phys. Rev. Lett. 109 167003
[81] Lu X Y, Gretarsson H, Zhang R, Liu X R, Luo H Q, Tian W, Laver M, Yamani Z, Kim Y J, Nevidomskyy A H, Si Q M and Dai P C 2013 Phys. Rev. Lett. 110 257001
[82] B?hmer A. E, Hardy F, Wang L, Wolf T, Schweiss P and Meingast C 2015 Nat. Commun. 6 7911
[83] Avci S, Chmaissem O, Allred J M, Rosenkranz S, Eremin I, Chubukov A V, Bugaris D E, Chung D Y, Kanatzidis M G, Castellan J P, Schlueter J A, Claus H, Khalyavin D D, Manuel P, Daoud Aladine A and Osborn R 2014 Nat. Commun. 5 3845
[84] Wang L, Hardy F, B?hmer A E, Wolf T, Schweiss P and Meingast C 2016 Phys. Rev. B 93 014514
[85] Allred J M et al. 2016 Nat. Phys. 12 493
[86] Wu S et al. 2021 Phys. Rev. Lett. 126 107001
[87] Taddei K M, Allred J M, Bugaris D E, Lapidus S H, Krogstad M J, Claus H, Chung D Y, Kanatzidis M G, Osborn R, Rosenkranz S and Chmaissem O 2017 Phys. Rev. B 95 064508
[88] Taddei K M, Allred J M, Bugaris D E, Lapidus S H, Krogstad M J, Stadel R, Claus H, Chung D Y, Kanatzidis M G, Rosenkranz S, Osborn R and Chmaissem O 2016 Phys. Rev. B 93 134510
[89] Haberkorn N, Maiorov B, Jaime M, Usov I, Miura M, Chen G F, Yu W and Civale L 2011 Phys. Rev. B 84 064533
[90] Proke? K, Kreyssig A, Ouladdiaf B, Pratt D K, Ni N, Bud'ko S L, Canfield P C, McQueeney R J, Argyriou D N and Goldman A I 2010 Phys. Rev. B 81 180506
[91] Soh J H, Tucker G S, Pratt D K, Abernathy D L, Stone M B, Ran S, Bud'ko S L, Canfield P C, Kreyssig A, McQueeney R J and Goldman A I 2013 Phys. Rev. Lett. 111 227002
[92] Ortenzi L, Gretarsson H, Kasahara S, Matsuda Y, Shibauchi T, Finkelstein K D, Wu W, Julian S R, Kim Y J, Mazin I I and Boeri L 2015 Phys. Rev. Lett. 114 047001
[93] Su Y, Setty C, Wang Z and Hu J 2012 Phys. Rev. B 85 184517
[94] Materne P, Kamusella S, Sarkar R, Goltz T, Spehling J, Maeter H, Harnagea L, Wurmehl S, Büchner B, Luetkens H, Timm C and Klauss H H et al. 2015 Phys. Rev. B 92 134511
[95] Kihou K, Saito T, Fujita K, Ishida S, Nakajima1 M, Horigane K, Fukazawa H, Kohori Y, Uchida S, Akimitsu J, Iyo1 A, Lee C and Eisaki H et al. 2016 J. Phys. Soc. Jpn. 85 034718
[96] Kihou K, Saito T, Ishida S, Nakajima M, Tomioka Y, Fukazawa H, Kohori Y, Ito T, Uchida S, Iyo A, Lee C H and Eisaki H 2010 J. Phys. Soc. Jpn. 79 124713
[97] Wang A F, Zhou S Y, Luo X G, Hong X C, Yan Y J, Ying J J, Cheng P, Ye G J, Xiang Z J, Li S Y and Chen X H 2014 Phys. Rev. B 89 064510
[98] Chen H, Ren Y, Qiu Y, Bao W, Liu R H, Wu G, Wu T, Xie Y L, Wang X F, Huang Q and Chen X H 2009 Europhys. Lett. 85 17006
[99] Rotter M, Panger M, Tegel M and Johrendt D 2008 Angew. Chem. Int. Edn. 47 7949
[100] Johrendt D, Hosono H, Hoffmann R and P?ttgen R 2011 Z. Kristallogr. 226 435
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[3] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[4] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[5] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[6] Electric and thermal transport properties of topological insulator candidate LiMgBi
Hao OuYang(欧阳豪), Qing-Xin Dong(董庆新), Yi-Fei Huang(黄奕飞), Jun-Sen Xiang(项俊森), Li-Bo Zhang(张黎博), Chen-Sheng Li(李晨圣), Pei-Jie Sun(孙培杰), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2021, 30(12): 127101.
[7] Crystal growth, spectral properties and Judd-Ofelt analysis of Pr: CaF2-YF3
Jie Tian(田杰), Xiao Cao(曹笑), Wudi Wang(王无敌), Jian Liu(刘坚), Jianshu Dong(董建树), Donghua Hu(胡冬华), Qingguo Wang(王庆国), Yanyan Xue(薛艳艳), Xiaodong Xu(徐晓东), and Jun Xu(徐军). Chin. Phys. B, 2021, 30(10): 108101.
[8] Growth and physical characterization of high resistivityFe: β-Ga2O3 crystals
Hao Zhang(张浩), Hui-Li Tang(唐慧丽), Nuo-Tian He(何诺天), Zhi-Chao Zhu(朱智超), Jia-Wen Chen(陈佳文), Bo Liu(刘波), Jun Xu(徐军). Chin. Phys. B, 2020, 29(8): 087201.
[9] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[10] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[11] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[12] A low-dimensional crystal growth model on an isotropic and quasi-free sustained substrate
Chenxi Lu(卢晨曦), Senjiang Yu(余森江), Lingwei Li(李领伟), Bo Yang(杨波), Xiangming Tao(陶向明), Gaoxiang Ye(叶高翔). Chin. Phys. B, 2020, 29(3): 038101.
[13] A numerical study on pattern selection in crystal growth by using anisotropic lattice Boltzmann-phase field method
Zhaodong Zhang(张兆栋), Yuting Cao(曹宇婷), Dongke Sun(孙东科), Hui Xing(邢辉), Jincheng Wang(王锦程), Zhonghua Ni(倪中华). Chin. Phys. B, 2020, 29(2): 028103.
[14] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[15] Transport properties of topological nodal-line semimetal candidate CaAs3 under hydrostatic pressure
Jing Li(李婧), Ling-Xiao Zhao(赵凌霄), Yi-Yan Wang(王义炎), Xin-Min Wang(王欣敏), Chao-Yang Ma(麻朝阳), Wen-Liang Zhu(朱文亮), Mo-Ran Gao(高默然), Shuai Zhang(张帅), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富). Chin. Phys. B, 2019, 28(4): 046202.
No Suggested Reading articles found!