Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 014205    DOI: 10.1088/1674-1056/ac192a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance

Jie Cheng(程杰)1,†, Gaojun Wang(王高俊)1, Peng Dong(董鹏)2, Dapeng Liu(刘大鹏)2, Fengfeng Chi(迟逢逢)1, and Shengli Liu(刘胜利)1
1 School of Science, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 College of Electronic and Optical Engineering&College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract  The photonic spin Hall effect (SHE), featured by a spin-dependent transverse shift of left- and right-handed circularly polarized light, holds great potential for applications in optical sensors, precise metrology and nanophotonic devices. In this paper, we present the significant enhancement of photonic SHE in the terahertz range by considering the InSb-supported long-range surface plasmon resonance (LRSPR) effect. The influences of the InSb/ENZ layer thickness and temperature on the photonic SHE were investigated. With the optimal structural parameters and temperature, the maximal spin shift of the horizontal polarization light can reach up to 2.68 mm. Moreover, the spin shift is very sensitive to the refractive index change of gas, and thus a terahertz gas sensing device with a superior intensity sensitivity of 2.5×105 μm/RIU is proposed. These findings provide an effective method to enhance the photonic SHE in the terahertz range and therefore offer the opportunity for developing the terahertz optical sensors based on photonic SHE.
Keywords:  surface plasmon resonance      photonic spin Hall effect      InSb      gas sensor  
Received:  01 June 2021      Revised:  03 July 2021      Accepted manuscript online:  30 July 2021
PACS:  42.25.-p (Wave optics)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.79.-e (Optical elements, devices, and systems)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (NSFC) (Grant No. 12175107), Open Project of National Laboratory of Solid State Microstructures of Nanjing University (Grant No. M32022), and the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY220030).
Corresponding Authors:  Jie Cheng     E-mail:  chengj@njupt.edu.cn

Cite this article: 

Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利) Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance 2022 Chin. Phys. B 31 014205

[1] Onada M, Murakami S and Nagaosa N 2004 Phys. Rev. Lett. 93 083901
[2] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and Macdonald A H 2004 Phys. Rev. Lett. 92 126603
[3] Bliokh K Y, Rodríguez-Fortuňo F J, Nori F and Zayats A V 2015 Nat. Photon. 9 796
[4] Fedorov F I 2013 J. Opt. 15 014002
[5] Imbert C 1972 Phys. Rev. D 5 787
[6] Bliokh K Y, Rodríguez-Fortuňo F J, Nori F and Zayats A V 2015 Nat. Photon. 9 796
[7] Cardano F and Marrucci L 2015 Nat. Photon. 9 776
[8] Chi C, Jiang Q, Liu Z X, Zheng L H, Jiang M L. Zhang H, Lin F, Shen B and Fang Z Y 2021 Sci. Adv. 7 eabf8011
[9] Ling X H, Zhou X X, Huang K and Liu Y H 2017 Rep. Prog. Phys. 80 066401
[10] Zhou X X, Ling X H, Luo H L and Wen S C 2012 Appl. Phys. Lett. 101 251602
[11] Wang R S, Zhou J X, Zeng K M, Chen S Z, Ling X H, Shu W X, Luo H L and Wen S C 2020 APL Photon. 5 016105
[12] He S S, Zhou J X, Chen S Z, Shu W X, Luo H L and Wen S C 2020 Opt. Lett. 45 877
[13] Li N X, Tang T T, Li J, Luo L, Li C Y, Shen J and Yao J Q 2019 J. Magn. Magn. Mater. 484 445
[14] Jiang X, Tang J, Li Z F, Liao Y L, Jiang L Y, Dai X Y and Xiang Y J 2019 J. Phys. D: Appl. Phys. 52 045401
[15] Jiang X, Wang Q K, Guo J, Chen S Q, Dai X Y and Xiang Y J 2018 Plasmonics 13 1467
[16] Zhou X X, Sheng L J and Ling X H 2018 Sci. Rep. 8 1221
[17] Hosten O and Kwiat P 2008 Science 319 787
[18] Luo H L, Zhou X X, Shu W X, Wen S C and Fan D Y 2011 Phys. Rev. A 84 043806
[19] Jiang X, Wang Q K, Guo J, Zhang J, Chen S Q, Dai X Y and Xiang Y J 2018 J. Phys. D: Appl. Phys. 51 145104
[20] Dong P, Cheng J, Da H X and Yan X H 2020 New J. Phys. 22 113007
[21] Zhou X X, Lin X, Xiao Z C, Low T, Al'u A, Zhang B L and Sun H D 2019 Phys. Rev. B 100 115429
[22] Dong P, Wang G J and Cheng J 2021 Chin. Phys. B 30 034202
[23] Li Z W, Li Y, Han T Y, Wang X L, Yu Y, Tay B, Liu Z and Fang Z Y 2017 ACS Nano 11 1165
[24] Zheng L H, Liu Z X, Liu D L, Wang X G, Li Y, Jiang M L, Lin F, Zhang H, Shen B, Zhu X, Gong Y J and Fang Z Y 2021 Nat. Commun. 12 291
[25] Zhou X X and Ling X H 2016 IEEE Photon. J. 8 4801108
[26] Xiang Y J, Jiang X, You Q, Guo J and Dai X Y 2017 Photonics Res. 5 467
[27] Wang Q K, Jiang X, Wang X, Dai X Y and Xiang Y J 2017 IEEE Photon. J. 9 6102610
[28] Tan X J and Zhu X S 2016 Opt. Lett. 41 2478
[29] Madelung O 1964 Physics of III-V Compounds (New York)
[30] Tang Q Y, Wang Q, Zhang D W, Wang Z F and Huang Y S 2014 Superlattice. Microst. 75 955
[31] Rivas J G, Janke C, Bolivar P H and Kurz H 2005 Opt. Express 13 847
[32] Wang P X, Wan B F, Peng H M, Hai Y M, Zhang F and Zhang D 2021 Opt. Quant. Electron 53 113
[33] Zhu W G and She W L 2015 Opt. Lett. 40 2961
[34] Luo L and Tang T T 2017 Superlattice. Microst. 109 259
[35] Sánchez-Gil J A and Rivas J G 2006 Phys. Rev. B 73 205410
[36] Oszwaldowski M and Zimpe M 1988 Phys. Chem. Solids 49 1179
[37] Luo H L, Ling X H, Zhou X X, Shu W X, Wen S C and Fan D Y 2011 Phys. Rev. A 84 033801
[38] Piliarik M, Parova L and Homola J 2009 Biosens. Bioelectron. 24 1399
[39] Yoo H, Shin J, Sim J, Cho H and Hong S 2020 Biosens. Bioelectron. 168 112561
[40] Conteduca D, Dell'Olio F, Innone F, Ciminelli C and Armenise M N 2016 Opt. Laser Technol. 77 151
[41] Purkayastha A, Srivastava T and Jha R 2016 Sensor Actuat. B-Chem. 227 291
[42] Tang J, Ye Y Y, Xu J, Zheng Z W, Jin X L, Jiang L Y, Jiang J and Xiang Y J 2020 Nanomaterials 10 500
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
[8] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[9] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[10] Asymmetrical photonic spin Hall effect based on dielectric metasurfaces
Guangzhou Geng(耿广州), Ruhao Pan(潘如豪), Wei Zhu(朱维), and Junjie Li(李俊杰). Chin. Phys. B, 2022, 31(12): 124207.
[11] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[12] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[13] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[14] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[15] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
No Suggested Reading articles found!