ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance |
Jie Cheng(程杰)1,†, Gaojun Wang(王高俊)1, Peng Dong(董鹏)2, Dapeng Liu(刘大鹏)2, Fengfeng Chi(迟逢逢)1, and Shengli Liu(刘胜利)1 |
1 School of Science, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 College of Electronic and Optical Engineering&College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, China |
|
|
Abstract The photonic spin Hall effect (SHE), featured by a spin-dependent transverse shift of left- and right-handed circularly polarized light, holds great potential for applications in optical sensors, precise metrology and nanophotonic devices. In this paper, we present the significant enhancement of photonic SHE in the terahertz range by considering the InSb-supported long-range surface plasmon resonance (LRSPR) effect. The influences of the InSb/ENZ layer thickness and temperature on the photonic SHE were investigated. With the optimal structural parameters and temperature, the maximal spin shift of the horizontal polarization light can reach up to 2.68 mm. Moreover, the spin shift is very sensitive to the refractive index change of gas, and thus a terahertz gas sensing device with a superior intensity sensitivity of 2.5×105 μm/RIU is proposed. These findings provide an effective method to enhance the photonic SHE in the terahertz range and therefore offer the opportunity for developing the terahertz optical sensors based on photonic SHE.
|
Received: 01 June 2021
Revised: 03 July 2021
Accepted manuscript online: 30 July 2021
|
PACS:
|
42.25.-p
|
(Wave optics)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
42.79.-e
|
(Optical elements, devices, and systems)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
Fund: Project supported by the National Natural Science Foundation of China (NSFC) (Grant No. 12175107), Open Project of National Laboratory of Solid State Microstructures of Nanjing University (Grant No. M32022), and the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY220030). |
Corresponding Authors:
Jie Cheng
E-mail: chengj@njupt.edu.cn
|
Cite this article:
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利) Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance 2022 Chin. Phys. B 31 014205
|
[1] Onada M, Murakami S and Nagaosa N 2004 Phys. Rev. Lett. 93 083901 [2] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and Macdonald A H 2004 Phys. Rev. Lett. 92 126603 [3] Bliokh K Y, Rodríguez-Fortuňo F J, Nori F and Zayats A V 2015 Nat. Photon. 9 796 [4] Fedorov F I 2013 J. Opt. 15 014002 [5] Imbert C 1972 Phys. Rev. D 5 787 [6] Bliokh K Y, Rodríguez-Fortuňo F J, Nori F and Zayats A V 2015 Nat. Photon. 9 796 [7] Cardano F and Marrucci L 2015 Nat. Photon. 9 776 [8] Chi C, Jiang Q, Liu Z X, Zheng L H, Jiang M L. Zhang H, Lin F, Shen B and Fang Z Y 2021 Sci. Adv. 7 eabf8011 [9] Ling X H, Zhou X X, Huang K and Liu Y H 2017 Rep. Prog. Phys. 80 066401 [10] Zhou X X, Ling X H, Luo H L and Wen S C 2012 Appl. Phys. Lett. 101 251602 [11] Wang R S, Zhou J X, Zeng K M, Chen S Z, Ling X H, Shu W X, Luo H L and Wen S C 2020 APL Photon. 5 016105 [12] He S S, Zhou J X, Chen S Z, Shu W X, Luo H L and Wen S C 2020 Opt. Lett. 45 877 [13] Li N X, Tang T T, Li J, Luo L, Li C Y, Shen J and Yao J Q 2019 J. Magn. Magn. Mater. 484 445 [14] Jiang X, Tang J, Li Z F, Liao Y L, Jiang L Y, Dai X Y and Xiang Y J 2019 J. Phys. D: Appl. Phys. 52 045401 [15] Jiang X, Wang Q K, Guo J, Chen S Q, Dai X Y and Xiang Y J 2018 Plasmonics 13 1467 [16] Zhou X X, Sheng L J and Ling X H 2018 Sci. Rep. 8 1221 [17] Hosten O and Kwiat P 2008 Science 319 787 [18] Luo H L, Zhou X X, Shu W X, Wen S C and Fan D Y 2011 Phys. Rev. A 84 043806 [19] Jiang X, Wang Q K, Guo J, Zhang J, Chen S Q, Dai X Y and Xiang Y J 2018 J. Phys. D: Appl. Phys. 51 145104 [20] Dong P, Cheng J, Da H X and Yan X H 2020 New J. Phys. 22 113007 [21] Zhou X X, Lin X, Xiao Z C, Low T, Al'u A, Zhang B L and Sun H D 2019 Phys. Rev. B 100 115429 [22] Dong P, Wang G J and Cheng J 2021 Chin. Phys. B 30 034202 [23] Li Z W, Li Y, Han T Y, Wang X L, Yu Y, Tay B, Liu Z and Fang Z Y 2017 ACS Nano 11 1165 [24] Zheng L H, Liu Z X, Liu D L, Wang X G, Li Y, Jiang M L, Lin F, Zhang H, Shen B, Zhu X, Gong Y J and Fang Z Y 2021 Nat. Commun. 12 291 [25] Zhou X X and Ling X H 2016 IEEE Photon. J. 8 4801108 [26] Xiang Y J, Jiang X, You Q, Guo J and Dai X Y 2017 Photonics Res. 5 467 [27] Wang Q K, Jiang X, Wang X, Dai X Y and Xiang Y J 2017 IEEE Photon. J. 9 6102610 [28] Tan X J and Zhu X S 2016 Opt. Lett. 41 2478 [29] Madelung O 1964 Physics of III-V Compounds (New York) [30] Tang Q Y, Wang Q, Zhang D W, Wang Z F and Huang Y S 2014 Superlattice. Microst. 75 955 [31] Rivas J G, Janke C, Bolivar P H and Kurz H 2005 Opt. Express 13 847 [32] Wang P X, Wan B F, Peng H M, Hai Y M, Zhang F and Zhang D 2021 Opt. Quant. Electron 53 113 [33] Zhu W G and She W L 2015 Opt. Lett. 40 2961 [34] Luo L and Tang T T 2017 Superlattice. Microst. 109 259 [35] Sánchez-Gil J A and Rivas J G 2006 Phys. Rev. B 73 205410 [36] Oszwaldowski M and Zimpe M 1988 Phys. Chem. Solids 49 1179 [37] Luo H L, Ling X H, Zhou X X, Shu W X, Wen S C and Fan D Y 2011 Phys. Rev. A 84 033801 [38] Piliarik M, Parova L and Homola J 2009 Biosens. Bioelectron. 24 1399 [39] Yoo H, Shin J, Sim J, Cho H and Hong S 2020 Biosens. Bioelectron. 168 112561 [40] Conteduca D, Dell'Olio F, Innone F, Ciminelli C and Armenise M N 2016 Opt. Laser Technol. 77 151 [41] Purkayastha A, Srivastava T and Jha R 2016 Sensor Actuat. B-Chem. 227 291 [42] Tang J, Ye Y Y, Xu J, Zheng Z W, Jin X L, Jiang L Y, Jiang J and Xiang Y J 2020 Nanomaterials 10 500 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|