Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 028101    DOI: 10.1088/1674-1056/ac1336
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor

Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟)
School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  SnO2/Co3O4 nanofibers (NFs) are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields. The morphology and structure of SnO2/Co3O4 hetero-nanofibers are characterized by using field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), x-ray diffraction (XRD), and x-ray photoelectron spectrometer (XPS). The analyses of SnO2/Co3O4 NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber, which is related to the homopolar electrospinning and the crystallization during sintering. As a typical n-type semiconductor, SnO2 has the disadvantages of high optimal operating temperature and poor reproducibility. Comparing with SnO2, the optimal operating temperature of SnO2/Co3O4 NFs is reduced from 350℃ to 250℃, which may be related to the catalysis of Co3O4. The response of SnO2/Co3O4 to 100-ppm ethanol at 250℃ is 50.9, 9 times higher than that of pure SnO2, which may be attributed to the p-n heterojunction between the n-type SnO2 crystalline grain and the p-type Co3O4 crystalline grain. The nanoscale p-n heterojunction promotes the electron migration and forms an interface barrier. The synergy effects between SnO2 and Co3O4, the crystalline grain p-n heterojunction, the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.
Keywords:  SnO2/Co3O4 nanofibers (NFs)      homopolar double jets electrospinning      gas sensors      nanoscale p-n heterojunction  
Received:  25 April 2021      Revised:  28 June 2021      Accepted manuscript online:  12 July 2021
PACS:  81.16.-c (Methods of micro- and nanofabrication and processing)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  85.35.-p (Nanoelectronic devices)  
Corresponding Authors:  Wei Tang     E-mail:  tangweiyouxiang@foxmail.com

Cite this article: 

Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟) SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor 2022 Chin. Phys. B 31 028101

[1] Kou X, Wang C, Ding M, Feng C, Li X, Ma J, Zhang H, Sun Y and Lu G 2016 Sens. Actuators B 236 425
[2] Burgués J and Marco S 2018 Sensors 18 339
[3] Liu X, Chen N, Han B, Xiao X, Chen G, Djerdj I and Wang Y 2015 Nanoscale 7 14872
[4] Suematsu K, Shin Y, Hua Z, Yoshida K and Shimanoe K 2014 ACS Appl. Mater. Interfaces 6 5319
[5] Yan Z, He X L, Li J P, Jian J and Gao X G 2012 Chin. Phys. Lett. 29 070701
[6] Panahi N, Shirazi M and Ghoranneviss M 2016 Chin. Phys. Lett. 33 066802
[7] Hsueh T J, Peng C H and Chen W S 2019 Sens. Actuators B 304 127319
[8] Li Y Z, Feng Q J, Shi B, Gao C, Wang D Y and Liang H W 2020 Chin. Phys. B 29 018102
[9] Wei A, Wang Z, Pan L H, Li W W, Xiong L, Dong X C and Huang W 2011 Chin. Phys. Lett. 28 080702
[10] Xu L, Wang R, Liu Y and Dong L 2011 Chin. Phys. Lett. 28 040701
[11] Ma J, Fan H, Zhang W, Sui J and Wang S 2019 Sens. Actuators B 305 127456
[12] Geng W, Ma Z, Zhao Y, Yang J, He X, Duan L, Li F, Hou H and Zhang Q 2020 Sens. Actuators B 325 128775
[13] Fujihara S, Maeda T, Ohgi H, Hosono E and Kim S H 2004 Langmuir 20 6476
[14] Hernández-Ramírez F, Tarancón A, Casals O, Arbiol J, Romano-Rodríguez A and Morante J R 2007 Sens. Actuators B 121 3
[15] Yoon J W, Choi S H, Kim J S, et al. 2016 NPG Asia Mater. 8 e244
[16] Umar A, Ammar H Y, Kumar R, Ibrahim A A and Al-Assiri M S 2020 Sens. Actuators B 304 127352
[17] Zhou Q, Xu L, Umar A, Chen W and Kumar R 2018 Sens. Actuators B 256 656
[18] Mudra E, Shepa I, Milkovic O, Dankova Z and Dusza J 2019 Appl. Surf. Sci. 480 876
[19] Liu T, Yu Z, Liu Y, Gao J and Liu F 2020 Sens. Actuators B 318 128167
[20] Kou X, Meng F, Chen K, Wang T and Lu G 2020 Sens. Actuators B 320 128292
[21] Guo J, Li Y, Jiang B, Gao H and Lu G 2020 Sens. Actuators B 310 127780
[22] Park K R, Cho H B, Lee J, Song Y and Choa Y H 2019 Sens. Actuators B 302 127179
[23] Wang D, Tang M, Fang H and Sun J 2020 Sens. Actuators B 318 128290
[24] Bai S, Guo W, Sun J, Jiao L, Ye T, Chen A, Luo R and Li D 2016 Sens. Actuators B 226 96
[25] Motaung D E, Mhlongo G H, Makgwane P R, Dhonge B P and Ray S S 2018 Sens. Actuators B 254 984
[26] Park S H, Kim B Y, Jo Y K, Dai Z and Lee J H 2020 Sens. Actuators B 309 127805
[27] Yu X X, Liu X S, Wu M Z, Sun Z Q, Li G and Chen X S 2014 J. Phys. Chem. C 27 99
[28] Kou X, Wang C, Ding M, Feng C, Li X, Ma J, Zhang H, Sun Y and Lu G 2016 Sens. Actuators B 236 425
[29] Choi S W, Jung S H and Kim S S 2011 Nanotechnology 22 225501
[30] Kim J H, Lee J H, Mirzaei A, Kim H W and Kim S S 2017 Sens. Actuators B 248 500
[31] Vladimirova S A, Rumyantseva M N, Filatova D G, Chizhov A S, Khmelevsky N O, Konstantinova E A, Kozlovsky V F, Marchevsky A V, Karakulina O M and Hadermann J 2017 J. Alloys Compd. 721 249
[32] Tang W, Li D W, Du X J, Yu J and Sun Q Q 2019 IOP Conference Series:Materials Science and Engineering 479 012116
[33] Bai S, Liu H, Luo R, Chen A and Li D 2014 RSC Adv. 4 62862
[34] Du H, Yao P, Sun Y, Wang J and Wang H 2017 Sensors 17 1822
[35] Liu C B, He Y and Wang S L 2015 Chin. Phys. B 24 118501
[36] Ziabari M, Mottaghitalab V, Mcgovern S T and Haghi A K 2008 Chin. Phys. Lett. 25 3071
[37] Du H, Wang J, Su M, Yao P and Yu N 2012 Sens. Actuators B 166-167 746
[38] Kong J, Tan H R, Tan S Y, Li F, Wong S Y, Li X and Lu X 2010 Chem. Commun. Roy. Soc. Chem. 46 8773
[39] Xia X, Dong X J, Wei Q F, Cai Y B and Lu K Y 2012 Express Polym. Lett. 6 169
[40] Xiang H, Long Y, Yu X, Zhang X, Zhao N and Xu.J 2011 CrystEngComm 13 4856
[41] Zafeiratos S, Dintzer T, Teschner D, Blume R, Knop-Gericke A and Schl G R 2010 J. Catal. 269 309
[42] Xu Y, Ma T, Zheng L, Sun L and Zhang J 2018 Sens. Actuators B 284 202
[43] Tang W, Yao M, Deng Y, Li X, Han N, Wu X and Chen Y 2016 Chem. Eng. J. 306 709
[44] Liu J, Wang C, Yang Q, Gao Y, Zhou X, Liang X, Sun P and Lu G 2016 Sens. Actuators B 224 128
[45] Yang F and Guo Z 2015 J. Colloid Interface Sci. 448 265
[46] Kim H J and Lee J H 2014 Sens. Actuators B 192 607
[47] Gardon M and Guilemany J M 2013 J. Mater. Sci. Mater. Electron. 24 1410
[48] Wang Z, Li Z, Sun J, Zhang H, Wang W, Zheng W and Wang C 2010 J. Phys. Chem. C 114 6100
[49] Mashock M, Yu K, Cui S, Mao S and Chen J 2012 ACS Appl. Mater. Interfaces 4 4192
[50] Vladimirova S A, Rumyantseva M N, Filatova D G, Chizhov A S, Khmelevsky N O, Konstantinova E A, Kozlovsky V F, Marchevsky A V, Karakulina O M and Hadermann J 2017 J. Alloys Compd. 721 249
[51] Rumyantseva M N, Vladimirova S A, Vorobyeva N A, Giebelhaus I and Gaskov A M 2018 Sens. Actuators B 255 564
[52] Ju D, Xu H, Qiu Z, Zhang Z, Xu Q, Zhang J, Wang J and Cao B 2015 ACS Appl. Mater. Interfaces 7 19163
[1] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[2] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
No Suggested Reading articles found!