INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor |
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟)† |
School of Physics and Electronics, Shandong Normal University, Jinan 250358, China |
|
|
Abstract SnO2/Co3O4 nanofibers (NFs) are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields. The morphology and structure of SnO2/Co3O4 hetero-nanofibers are characterized by using field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), x-ray diffraction (XRD), and x-ray photoelectron spectrometer (XPS). The analyses of SnO2/Co3O4 NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber, which is related to the homopolar electrospinning and the crystallization during sintering. As a typical n-type semiconductor, SnO2 has the disadvantages of high optimal operating temperature and poor reproducibility. Comparing with SnO2, the optimal operating temperature of SnO2/Co3O4 NFs is reduced from 350℃ to 250℃, which may be related to the catalysis of Co3O4. The response of SnO2/Co3O4 to 100-ppm ethanol at 250℃ is 50.9, 9 times higher than that of pure SnO2, which may be attributed to the p-n heterojunction between the n-type SnO2 crystalline grain and the p-type Co3O4 crystalline grain. The nanoscale p-n heterojunction promotes the electron migration and forms an interface barrier. The synergy effects between SnO2 and Co3O4, the crystalline grain p-n heterojunction, the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.
|
Received: 25 April 2021
Revised: 28 June 2021
Accepted manuscript online: 12 July 2021
|
PACS:
|
81.16.-c
|
(Methods of micro- and nanofabrication and processing)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
85.35.-p
|
(Nanoelectronic devices)
|
|
Corresponding Authors:
Wei Tang
E-mail: tangweiyouxiang@foxmail.com
|
Cite this article:
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟) SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor 2022 Chin. Phys. B 31 028101
|
[1] Kou X, Wang C, Ding M, Feng C, Li X, Ma J, Zhang H, Sun Y and Lu G 2016 Sens. Actuators B 236 425 [2] Burgués J and Marco S 2018 Sensors 18 339 [3] Liu X, Chen N, Han B, Xiao X, Chen G, Djerdj I and Wang Y 2015 Nanoscale 7 14872 [4] Suematsu K, Shin Y, Hua Z, Yoshida K and Shimanoe K 2014 ACS Appl. Mater. Interfaces 6 5319 [5] Yan Z, He X L, Li J P, Jian J and Gao X G 2012 Chin. Phys. Lett. 29 070701 [6] Panahi N, Shirazi M and Ghoranneviss M 2016 Chin. Phys. Lett. 33 066802 [7] Hsueh T J, Peng C H and Chen W S 2019 Sens. Actuators B 304 127319 [8] Li Y Z, Feng Q J, Shi B, Gao C, Wang D Y and Liang H W 2020 Chin. Phys. B 29 018102 [9] Wei A, Wang Z, Pan L H, Li W W, Xiong L, Dong X C and Huang W 2011 Chin. Phys. Lett. 28 080702 [10] Xu L, Wang R, Liu Y and Dong L 2011 Chin. Phys. Lett. 28 040701 [11] Ma J, Fan H, Zhang W, Sui J and Wang S 2019 Sens. Actuators B 305 127456 [12] Geng W, Ma Z, Zhao Y, Yang J, He X, Duan L, Li F, Hou H and Zhang Q 2020 Sens. Actuators B 325 128775 [13] Fujihara S, Maeda T, Ohgi H, Hosono E and Kim S H 2004 Langmuir 20 6476 [14] Hernández-Ramírez F, Tarancón A, Casals O, Arbiol J, Romano-Rodríguez A and Morante J R 2007 Sens. Actuators B 121 3 [15] Yoon J W, Choi S H, Kim J S, et al. 2016 NPG Asia Mater. 8 e244 [16] Umar A, Ammar H Y, Kumar R, Ibrahim A A and Al-Assiri M S 2020 Sens. Actuators B 304 127352 [17] Zhou Q, Xu L, Umar A, Chen W and Kumar R 2018 Sens. Actuators B 256 656 [18] Mudra E, Shepa I, Milkovic O, Dankova Z and Dusza J 2019 Appl. Surf. Sci. 480 876 [19] Liu T, Yu Z, Liu Y, Gao J and Liu F 2020 Sens. Actuators B 318 128167 [20] Kou X, Meng F, Chen K, Wang T and Lu G 2020 Sens. Actuators B 320 128292 [21] Guo J, Li Y, Jiang B, Gao H and Lu G 2020 Sens. Actuators B 310 127780 [22] Park K R, Cho H B, Lee J, Song Y and Choa Y H 2019 Sens. Actuators B 302 127179 [23] Wang D, Tang M, Fang H and Sun J 2020 Sens. Actuators B 318 128290 [24] Bai S, Guo W, Sun J, Jiao L, Ye T, Chen A, Luo R and Li D 2016 Sens. Actuators B 226 96 [25] Motaung D E, Mhlongo G H, Makgwane P R, Dhonge B P and Ray S S 2018 Sens. Actuators B 254 984 [26] Park S H, Kim B Y, Jo Y K, Dai Z and Lee J H 2020 Sens. Actuators B 309 127805 [27] Yu X X, Liu X S, Wu M Z, Sun Z Q, Li G and Chen X S 2014 J. Phys. Chem. C 27 99 [28] Kou X, Wang C, Ding M, Feng C, Li X, Ma J, Zhang H, Sun Y and Lu G 2016 Sens. Actuators B 236 425 [29] Choi S W, Jung S H and Kim S S 2011 Nanotechnology 22 225501 [30] Kim J H, Lee J H, Mirzaei A, Kim H W and Kim S S 2017 Sens. Actuators B 248 500 [31] Vladimirova S A, Rumyantseva M N, Filatova D G, Chizhov A S, Khmelevsky N O, Konstantinova E A, Kozlovsky V F, Marchevsky A V, Karakulina O M and Hadermann J 2017 J. Alloys Compd. 721 249 [32] Tang W, Li D W, Du X J, Yu J and Sun Q Q 2019 IOP Conference Series:Materials Science and Engineering 479 012116 [33] Bai S, Liu H, Luo R, Chen A and Li D 2014 RSC Adv. 4 62862 [34] Du H, Yao P, Sun Y, Wang J and Wang H 2017 Sensors 17 1822 [35] Liu C B, He Y and Wang S L 2015 Chin. Phys. B 24 118501 [36] Ziabari M, Mottaghitalab V, Mcgovern S T and Haghi A K 2008 Chin. Phys. Lett. 25 3071 [37] Du H, Wang J, Su M, Yao P and Yu N 2012 Sens. Actuators B 166-167 746 [38] Kong J, Tan H R, Tan S Y, Li F, Wong S Y, Li X and Lu X 2010 Chem. Commun. Roy. Soc. Chem. 46 8773 [39] Xia X, Dong X J, Wei Q F, Cai Y B and Lu K Y 2012 Express Polym. Lett. 6 169 [40] Xiang H, Long Y, Yu X, Zhang X, Zhao N and Xu.J 2011 CrystEngComm 13 4856 [41] Zafeiratos S, Dintzer T, Teschner D, Blume R, Knop-Gericke A and Schl G R 2010 J. Catal. 269 309 [42] Xu Y, Ma T, Zheng L, Sun L and Zhang J 2018 Sens. Actuators B 284 202 [43] Tang W, Yao M, Deng Y, Li X, Han N, Wu X and Chen Y 2016 Chem. Eng. J. 306 709 [44] Liu J, Wang C, Yang Q, Gao Y, Zhou X, Liang X, Sun P and Lu G 2016 Sens. Actuators B 224 128 [45] Yang F and Guo Z 2015 J. Colloid Interface Sci. 448 265 [46] Kim H J and Lee J H 2014 Sens. Actuators B 192 607 [47] Gardon M and Guilemany J M 2013 J. Mater. Sci. Mater. Electron. 24 1410 [48] Wang Z, Li Z, Sun J, Zhang H, Wang W, Zheng W and Wang C 2010 J. Phys. Chem. C 114 6100 [49] Mashock M, Yu K, Cui S, Mao S and Chen J 2012 ACS Appl. Mater. Interfaces 4 4192 [50] Vladimirova S A, Rumyantseva M N, Filatova D G, Chizhov A S, Khmelevsky N O, Konstantinova E A, Kozlovsky V F, Marchevsky A V, Karakulina O M and Hadermann J 2017 J. Alloys Compd. 721 249 [51] Rumyantseva M N, Vladimirova S A, Vorobyeva N A, Giebelhaus I and Gaskov A M 2018 Sens. Actuators B 255 564 [52] Ju D, Xu H, Qiu Z, Zhang Z, Xu Q, Zhang J, Wang J and Cao B 2015 ACS Appl. Mater. Interfaces 7 19163 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|