Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 096806    DOI: 10.1088/1674-1056/ac1e22
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Atomic and electronic structures of p-type dopants in 4H-SiC

Lingyan Lu(卢玲燕)1,†, Han Zhang(张涵)2,†, Xiaowei Wu(吴晓维)2, Jing Shi(石晶)1,‡, and Yi-Yang Sun(孙宜阳)2,§
1 Department of Physics, Jiangxi Normal University, Nanchang 330022, China;
2 State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
Abstract  Using hybrid density functional calculation, we study the atomic and electronic structures of p-type dopants, B, Al and Ga, in 4H-SiC. For B, depending on the growth condition, it can occupy both Si and C sites. In contrast, Al and Ga on the C sites exhibit too high formation energy to exist in a significant amount. In 4H-SiC, there exist two types of Si sites in wurtzite-like and zincblende-like local coordination, respectively. Our calculations suggest that the dopant atoms have negligible preference occupying the two sites. In neutral charge state, all the dopants exhibit significant distortions from the structure in the negatively charged state. For most cases, our calculations yield three distorted structures, in which the most stable one has the dopant atom displaced along its bond with one of the surrounding equatorial Si or C atoms, lowering the C3v symmetry to Cs symmetry (i.e., a mirror symmetry only). Among the three dopant elements, Al on Si sites exhibits overall the lowest formation energy and the shallowest acceptor level. Nevertheless, it is not a hydrogenic dopant with the acceptor level 0.12 eV above the valence band maximum based on calculation using a 400-atom supercell. Its corresponding defect state exhibits apparent localization along the [0001] direction, but it is relatively delocalized in the (0001) plane.
Keywords:  wide band gap semiconductors      p-type doping      SiC      density functional theory  
Received:  07 July 2021      Revised:  26 July 2021      Accepted manuscript online:  17 August 2021
PACS:  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Corresponding Authors:  Jing Shi, Yi-Yang Sun     E-mail:  sjd865@jxnu.edu.cn;yysun@mail.sic.ac.cn

Cite this article: 

Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳) Atomic and electronic structures of p-type dopants in 4H-SiC 2021 Chin. Phys. B 30 096806

[1] Kimoto T and Cooper J A 2014 Fundamentals of Silicon Carbide Technology (Singapore: John Wiley & Sons)
[2] Gorai P, McKinney R W, Haegel N M, Zakutayev A and Stevanovic V 2019 Energy Environ. Sci. 12 3338
[3] Van Daal H J, Knippeneerg W F and Wasscher J D 1963 J. Phys. Chem. Solids 24 109
[4] Amano H, Kito M, Hiramatsu K and Akasaki I 1989 Jpn J. Appl. Phys. 28 L2112
[5] Kalish R 1999 Carbon 37 781
[6] Sridhara S G, Devaty R P and Choyke W J 1998 J. Appl. Phys. 84 2963
[7] Monemar B 1974 Phys. Rev. B 10 676
[8] Nakamura S, Kumagai H, Kimoto T and Matsunami H 2002 Appl. Phys. Lett. 80 3355
[9] Dmitriev V A, Irvine K G, Carter C H, Kuznetsov N I and Kalinina E V 1996 Appl. Phys. Lett. 68 229
[10] Qian X, Jiang P Q and Yang R G 2017 Mater. Today Phys. 3 70
[11] Kamatagi M D, Sankeshwar N S and Mulimani B G 2007 Diamond Related Mater. 16 98
[12] Pengelly R S, Wood S M, Milligan J W, Sheppard S T and Pribble W L 2012 IEEE Trans. Microw. Theory Techn. 60 1764
[13] Roschke M and Schwierz F 2001 IEEE Trans. Electron. Dev. 48 1442
[14] Trew R J 1997 Phys. Stat. Sol. (A) 162 409
[15] Lebedev A A 1999 Semiconductors 33 107
[16] Deák P, Aradi B, Gali A and Gerstmann U 2003 Phys. Stat. Sol. (B) 235 139
[17] Aradi B, Deák P, Son N T, Janzén E, Choyke W J and Devaty R P 2001 Appl. Phys. Lett. 79 2746
[18] Zhou P L, Shi R Q, He J F and Zheng S K 2013 Acta. Phys. Sin. 62 233101 (in Chinese)
[19] Miyata M, Hattori S and Hayafuji Y 2009 Jpn. J. Appl. Phys. 48 041301
[20] Petrenko T T and Petrenko T L 2016 Phys. Rev. B 93 165203
[21] Gerstmann U, Gali A, Deák P, Frauenheim T and Overhof H 2004 Mater. Sci. Forum 457-460 711
[22] Sun Y Y, Abtew T A, Zhang P and Zhang S B 2014 Phys. Rev. B 90 165301
[23] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[25] Paier J, Marsman M, Hummer K, Kresse G, Gerber I C and Ángyán J G 2006 J. Chem. Phys. 124 154709
[26] Son N T, Chen W M, Kordina O, Konstantinov A O, Monemar B, Janzén E, Hofman D M, Volm D, Drechsler M and Meyer B K 1995 Appl. Phys. Lett. 66 1074
[27] Volm D, Meyer B K, Hofmann D M, Chen W M, Son N T, Persson C, Lindefelt U, Kordina O, Sörman E, Konstantinov A O, Monemar B and Janzén E 1996 Phys. Rev. B 53 15409
[28] Du M H and Zhang S B 2009 Phys. Rev. B 80 115217
[29] Wu X, Gao W, Chai J, Ming C, Chen M, Zeng H, Zhang P, Zhang S and Sun Y Y 2021 Sci. China Mater.
[30] Clark H K and Hoard J L 1943 J. Am. Chem. Soc. 65 2115
[31] Salvador J R, Bilc D, Mahanti S D and Kanatzidis M G 2003 Angew. Chem. Int. Ed. 42 1929
[32] Jeffrey G A and Wu V 1966 Acta Cryst 20 538
[33] Christenson S G, Xie W, Sun Y Y and Zhang S B 2015 J. Appl. Phys. 118 135708
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[5] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[8] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[9] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[10] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[11] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[12] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[13] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[14] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[15] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
No Suggested Reading articles found!