CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet |
Bo Chen(陈波)†, Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙) |
College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract Based on ab initio density functional theory calculations, we demonstrate that two carbon-doped boron nitride analog of α-graphyne structures, B3C2N3 and BC6N monolayers, are two-dimensional direct wide band gap semiconductors, and there are two inequivalent valleys in the vicinities of the vertices of their hexagonal Brillouin zones. Besides, B3C2N3 and BC6N monolayers exhibit relatively high carrier mobilities, and their direct band gap feature is robust against the biaxial strain. More importantly, the energetically most favorable B3C2N3 and BC6N bilayers also have direct wide band gaps, and valley polarization could be achieved by optical helicity. Finally, we show that BC6N monolayer might have high efficiency in photo-splitting reactions of water, and a vertical van der Waals heterostructure with a type-Ⅱ energy band alignment could be designed using B3C2N3 and BC6N monolayers. All the above-mentioned characteristics make B3C2N3 and BC6N monolayers, bilayers, and their heterostructures recommendable candidates for applications in valleytronic devices, metal-free photocatalysts, and photovoltaic cells.
|
Received: 17 December 2020
Revised: 14 January 2021
Accepted manuscript online: 20 January 2021
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the Special Foundation for Theoretical Physics Research Program of China (Grant No. 11847065) and the Natural Science Foundation of Shanxi Province, China (Grant No. 201901D211115). |
Corresponding Authors:
Bo Chen
E-mail: chenbo@tyut.edu.cn
|
Cite this article:
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙) First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet 2021 Chin. Phys. B 30 057101
|
[1] Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X D 2016 Nat. Rev. Mater. 1 16055 [2] Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 [3] Xiao D, Liu G B, Feng W X, Xu X D and Yao W 2012 Phys. Rev. Lett. 108 196802 [4] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 [5] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406 [6] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [7] Mak K F, He K L, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494 [8] Zeng H L, Dai J F, Yao W, Xiao D and Cui X D 2012 Nat. Nanotechnol. 7 490 [9] Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L and Feng J 2012 Nat. Commun. 3 887 [10] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [11] Yun W S, Han S W, Hong S C, Kim I G and Lee J D 2012 Phys. Rev. B 85 033305 [12] Singh R S, Tay R Y, Chow W L, Tsang S H, Mallick G and Teo E H T 2014 Appl. Phys. Lett. 104 163101 [13] Mahvash F, Paradis E, Drouin D, Szkopek T and Siaj M 2015 Nano Lett. 15 2263 [14] Kaloni T P, Joshi R P, Adhikari N P and Schwingenschlogl U 2014 Appl. Phys. Lett. 104 073116 [15] Song Z G, Lips Z W, Wang H, Bai X D, Wang W L, Du H L, Liu S Q, Wang C S, Han J Z, Yang Y C, Liu Z, Lu J, Fang Z Y and Yang J B 2017 Nano Lett. 17 2079 [16] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [17] Blöchl P E 1994 Phys. Rev. B 50 17953 [18] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [20] Hestenes M R and Stiefel E 1952 J. Res. Natl. Bur. Stand. 49 409 [21] Özçelik V O, Aktürk O Ü, Durgun E and Ciraci S 2015 Phys. Rev. B 92 125420 [22] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [23] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [24] Gonze X and Lee C 1997 Phys. Rev. B 55 10355 [25] Nóse S 1984 J. Chem. Phys. 81 511 [26] Hoover W G 1985 Phys. Rev. A 31 1695 [27] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [28] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456 [29] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847 [30] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 [31] Wang V, Xu N, Liu J C, Tang G and Geng W T 2019 arXiv:1908.08269 [32] Singh N B, Bhattacharya B and Sarkar U 2014 Struct. Chem. 25 1695 [33] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104 [34] Jiao L, Hu M, Peng Y, Luo Y, Li C and Chen Z 2016 J. Solid State Chem. 244 120 [35] Lee C, Wei X D, Kysar J W and Hone J 2008 Science 321 385 [36] Özçelik V O and Ciraci S 2013 J. Phys. Chem. C 117 2175 [37] Di Quarto F, Sunseri C, Piazza S and Romano M C 1997 J. Phys. Chem. B 101 2519 [38] Qiao L, Zhang S, Xiao H Y, Singh D J, Zhang K H L, Liu Z J, Zu X T and Li S 2018 J. Mater. Chem. C 6 1239 [39] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405 [40] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T, Wang D S, Wang E and Niu Q 2004 Phys. Rev. Lett. 92 037204 [41] Feng W X, Yao Y G, Zhu W G, Zhou J J, Yao W and Xiao D 2012 Phys. Rev. B 86 165108 [42] Peng B, Zhang H, Shao H Z, Xu Y F, Zhang R J and Zhua H Y 2016 J. Mater. Chem. C 4 3592 [43] Luo Y Z, Hu Y B and Xie Y Q 2019 J. Mater. Chem. A 7 27503 [44] Bardeen J and Shockley W 1950 Phys. Rev. 80 72 [45] Chen J M, Xi J Y, Wang D and Shuai Z G 2013 J. Phys. Chem. Lett. 4 1443 [46] Phuc H V, Hieu N N, Hoi B D, Hieu N V, Thu T V, Hung N M, Ilyasov V V, Poklonski N A and Nguyen C V 2018 J. Electron. Mater. 47 730 [47] ahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453 [48] Zheng H, Li X B, Chen N K, Xie S Y, Tian W Q, Chen Y P, Xia H, Zhang S B and Sun H B 2015 Phys. Rev. B 92 115307 [49] Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R and Sumanasekera G U 2007 Science 318 1424 [50] Behzad S 2016 Solid State Commun. 248 27 [51] Zhang Y N, Yun J N, Wang K Y, Chen X H, Yang Z, Zhang Z Y, Yan J F and Zhao W 2017 Comput. Mater. Sci. 136 12 [52] Sun S B, Dan J C, Xie X, Yu Y, Yang L L, Xiao S, Wu S Y, Peng K, Song F L, Wang Y N, Yang J N, Qian C J, Zuo Z C and Xu X L 2020 Chin. Phys. Lett. 37 087801 [53] Xu L X, Lu W G, Hu C, Guo Q X, Shang S, Xu X L, Yu G H, Yan Y, Wang L H and Teng J 2020 Chin. Phys. B 29 077304 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|