Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 124202    DOI: 10.1088/1674-1056/ac92d5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application

Jie Cheng(程杰)1,†, Jiahao Xu(徐家豪)2, Yinjie Xiang(项寅杰)1, Shengli Liu(刘胜利)1, Fengfeng Chi(迟逢逢)1, Bin Li(李斌)1, and Peng Dong(董鹏)3,‡
1 School of Science, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 School of Electrical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
Abstract  The photonic spin Hall effect (PSHE), characterized by two splitting beams with opposite spins, has great potential applications in nano-photonic devices, optical sensing fields, and precision metrology. We present the significant enhancement of terahertz (THz) PSHE by taking advantage of the optical Tamm state (OTS) in InSb-distributed Bragg reflector (DBR) structure. The spin shift of reflected light can be dynamically tuned by the structural parameters (e.g. the thickness) of the InSb-DBR structure as well as the temperature, and the maximum spin shift for a horizontally polarized incident beam at 1.1 THz can reach up to 11.15 mm. Moreover, we propose a THz gas sensing device based on the enhanced PSHE via the strong excitation of OTS for the InSb-DBR structure with a superior intensity sensitivity of 5.873×104 mm/RIU and good stability. This sensor exhibits two orders of magnitude improvement compared with the similar PSHE sensor based on InSb-supported THz long-range surface plasmon resonance. These findings may provide an alternative way for the enhanced PSHE and offer the opportunity for developing new optical sensing devices.
Keywords:  photonic spin Hall effect      optical Tamm state      InSb      gas sensor  
Received:  07 June 2022      Revised:  13 September 2022      Accepted manuscript online:  19 September 2022
PACS:  42.25.-p (Wave optics)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.79.-e (Optical elements, devices, and systems)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175107 and 12004194) and the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY220030).
Corresponding Authors:  Jie Cheng, Peng Dong     E-mail:  chengj@njupt.edu.cn;2021101298@niit.edu.cn

Cite this article: 

Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏) Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application 2022 Chin. Phys. B 31 124202

[1] Onada M, Murakami S and Nagaosa N 2004 Phys. Rev. Lett. 93 083901
[2] Bliokh K Y, Rodríguez-Fortuňo F J, Nori F and Zayats A V 2015 Nat. Photon. 9 796
[3] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and Macdonald A H 2004 Phys. Rev. Lett. 92 126603
[4] Cheng J, Xiang Y J, Xu J H, Liu S L and Dong P 2022 IEEE Sens. J. 22 12754
[5] Wang R S, Zhou J X, Zeng K M, Chen S Z, Ling X H, Shu W X, Luo H L and Wen S C 2020 APL Photon. 5 016105
[6] He S S, Zhou J X, Chen S Z, Shu W X, Luo H L and Wen S C 2020 Opt. Lett. 45 877
[7] Luo H L, Zhou X X, Shu W X, Wen S C and Fan D Y 2011 Phys. Rev. A 84 043806
[8] Zhou X X and Ling X H 2016 IEEE Photon. J. 8 4801108
[9] Cheng J, Xiang Y J, Wang G J, Xu J H, Dong P, Li B, Chi F F and Liu S L 2022 Appl. Opt. 61 4693
[10] Jiang X, Wang Q K, Guo J, Zhang J, Chen S Q, Dai X Y and Xiang Y J 2018 J. Phys. D: Appl. Phys. 51 145104
[11] Dong P, Cheng J, Da H X and Yan X H 2020 New J. Phys. 22 113007
[12] Zhou X X, Lin X, Xiao Z C, Low T, Alú A, Zhang B L and Sun H D 2019 Phys. Rev. B 100 115429
[13] Zhou H C, Yang G, Wang K, Long H and Lu P X 2010 Opt. Lett. 45 4112
[14] Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V and Shelykh I A 2007 Phys. Rev. B 76 165415
[15] Kavokin A V, Shelykh I A and Malpuech G 2005 Phys. Rev. B 72 233102
[16] Jiang L Y, Tang J, Wang Q K, Wu Y X, Zheng Z W, Xiang Y J and Dai X Y 2019 Chin. Opt. Lett. 17 020008
[17] Shen P, Yao M N, Liu J S, Long Y B, Guo W B and Shen L 2019 J. Mater. Chem. A 7 4102
[18] Kavokin A, Shelykh I and Malpuech G 2005 Appl. Phys. Lett. 87 261105
[19] Messelot S, Symonds C, Bellessa J, Tignon J, Dhillon S, Brubach J B, Roy P and Mangeney J 2020 ACS Photon. 7 2906
[20] Tang J, Xu J, Zheng Z W, Dong H, Dong J, Qian S G, Guo J, Jiang L Y and Xiang Y J 2019 Chin. Opt. Lett. 17 020007
[21] Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram R A, Chamberlain J M, Egorov A Y, Vasil'ev A P, Mikhrin V S and Kavokin A V 2008 Appl. Phys. Lett. 92 251112
[22] Bliokh K Y, Rodríguez-Fortuňo F J, Nori F and Zayats A V 2009 Appl. Phys. Lett. 95 151114
[23] Tian H S, Yang Y, Tang J, Jiang L Y and Xiang Y J 2021 Results Phys. 25 104300
[24] Madelung O and Meyerhofer D 1964 Physics of II!I-V Compounds (New York: John Wiley & Sons)
[25] Wang P X, Wan B F, Peng H M, Ma Y, Zhang H F and Zhang D 2021 Opt. Quantum Electron. 53 113
[26] Rivas J G, Janke C, Bolivar P H and Kurz H 2005 Opt. Express 13 847
[27] Sánchez-Gil J A and Rivas J G 2006 Phys. Rev. B 73 205410
[28] Oszwaldowski M and Zimpe M 1988 Phys. Chem. Solids 49 1179
[29] Luo H L, Ling X H, Zhou X X, Shu W X, Wen S C and Fan D Y 2011 Phys. Rev. A 84 033801
[30] Tan X J and Zhu X S 2016 Opt. Lett. 41 2478
[31] Lu G, Zhang K Y, Zhao Y P, Zhang L, Shang Z Q, Zhou H Y, Diao C and Zhou X C 2021 Nanomaterials 11 3447
[32] Cheng M, Fu P, Tang X T, Chen S Y, Chen X Y, Lin Y T and Feng S Y 2018 J. Opt. Soc. Am. B 35 1829
[33] Cheng J, Wang G J, Dong P, Liu D P, Chi F F and Liu S L 2022 Chin. Phys. B 31 014205
[34] Chamoli S K, Singh S and Guo C L 2020 IEEE Sens. J. 20 4628
[35] Lam C C C, Mandamparambil R, Sun T, Grattan K T V, Nanukuttan S V, Taylor S E and Basheer P A M 2009 IEEE Sens. J. 9 525
[36] Zhou X X, Sheng L J and Ling X H 2018 Sci. Rep. 8 1221
[37] Asri M I A, Hasan M N, Fuaad M R A, Yunos Y M and Ali M S M 2021 IEEE Sens. J. 21 18381
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[3] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[4] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
[5] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[6] Asymmetrical photonic spin Hall effect based on dielectric metasurfaces
Guangzhou Geng(耿广州), Ruhao Pan(潘如豪), Wei Zhu(朱维), and Junjie Li(李俊杰). Chin. Phys. B, 2022, 31(12): 124207.
[7] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[8] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[9] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[10] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[11] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[12] Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers
Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀). Chin. Phys. B, 2021, 30(2): 028504.
[13] A double quantum dot defined by top gates in a single crystalline InSb nanosheet
Yuanjie Chen(陈元杰), Shaoyun Huang(黄少云), Jingwei Mu(慕经纬), Dong Pan(潘东), Jianhua Zhao(赵建华), and Hong-Qi Xu(徐洪起). Chin. Phys. B, 2021, 30(12): 128501.
[14] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[15] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
No Suggested Reading articles found!