Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 027401    DOI: 10.1088/1674-1056/24/2/027401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Evolution of the 128-cm-1 Raman phonon mode with temperature in Ba(Fe1-xCox)2As 2 (x = 0.065 and 0.2)

Yang Yan-Xing (杨彦兴)a b, Gallais Yannb, Fang Zhi-Hao (方之颢)a, Shi Jing (石兢)a, Xiong Rui (熊锐)a
a School of Physics and Technology, Wuhan University, Wuhan 430072, China;
b Laboratoire Matériaux et Phénomenes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
Abstract  We report electronic Raman scattering measurements on Ba(Fe1-xCox)2As2 (x = 0.065 and 0.2) single crystals with Raman shifts from 9 cm-1 up to 600 cm-1 in the symmetry of B1g with respect to 1 Fe unit cell. When the crystals are cooled down, the evident quasielastic peaks of Raman spectra occur only in the crystal with x = 0.065, which is due to the contribution of orbital ordering between xz and yz Fe 3d orbitals, as we reported in another work. Here, we analyze the Eg phonon at 128 cm-1, which has the same function form of its Raman tensors as those of xz and yz Fe 3d orbitals in these two crystals respectively. Unlike their electronic continuums, no anomalies are found in the Eg phonons of these two samples, which simply follows the expressions corresponding to the anharmonic phonon decay into acoustic phonons with the same frequencies and opposite momenta. Our results indicate that the structural and magnetic phase transition might be completely suppressed by chemical doping and there is not any indication of coupling between charge nematicity and Eg phonon mode from our experimental results, which is consistent with the results in our previous work.
Keywords:  Raman scattering      iron-based superconductor      phonon mode  
Received:  24 September 2014      Revised:  10 October 2014      Accepted manuscript online: 
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  78.30.-j (Infrared and Raman spectra)  
  74.25.nd (Raman and optical spectroscopy)  
Fund: Project supported by the Agence Nationale de la Recherche through Grant PNICTIDES.
Corresponding Authors:  Xiong Rui     E-mail:  xiongrui@whu.edu.cn

Cite this article: 

Yang Yan-Xing (杨彦兴), Gallais Yann, Fang Zhi-Hao (方之颢), Shi Jing (石兢), Xiong Rui (熊锐) Evolution of the 128-cm-1 Raman phonon mode with temperature in Ba(Fe1-xCox)2As 2 (x = 0.065 and 0.2) 2015 Chin. Phys. B 24 027401

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[3] Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004
[4] Schafgans A A, Pursley B C, LaForge A D, Sefat A S, Mandrus D and Basov D N 2011 Phys. Rev. B 84 052501
[5] Chauvière L, Gallais Y, Cazayous M, Méasson M A, Sacuto A, Colson D and Forget A 2011 Phys. Rev. B 84 104508
[6] Chu J H, Analytis J G, Greve K D, McMahon P L, Islam Z, Yamamoto Y and Fisher I R 2010 Science 329 824
[7] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97
[8] Kivelson S A, Fradkin E and Emery V J 1998 Nature 393 550
[9] Lilly M P, Cooper K B, Eisenstein J P, Pfeiffer L N and West K W 1999 Phys. Rev. Lett. 82 394
[10] Kivelson S A, Blindloss I P, Fradkin E, Oganesyan V, Tranquada J M, Kapitulnik A and Howald C 2003 Rev. Mod. Phys. 75 1201
[11] Daou R, Chang J, LeBoeuf D, Cyr-Choiniére O, Laliberté F, Doiron-Leyraud N, Ramshaw B J, Liang R, Bonn D A, Hardy W N and Taillefer L 2010 Nature 463 519
[12] Borzi R A, Grigera S A, Farrel J, Lister S J S, Lee S L, Tennant D A, Maeno Y and Mckenzie A P 2007 Science 315 214
[13] Okazaki R, Shibauchi T, Shi H J, Haga Y, Matsuda T D, Yamamoto E, Onuki Y, Ikeda H and Mastuda Y 2011 Science 331 439
[14] Gallais Y, Fernandes R M, Paul I, Chauvière L, Yang Y X, Méasson M A, Cazayous M, Sacuto A, Colson D and Forget A 2013 Phys. Rev. Lett. 111 267001
[15] Yang Y X, Gallas Y, Fernandes R M, Paul I, Chauvière L, Méasson M A, Cazayous M, Sacuto A, Colson D and Forget A 2014 JPS Conf. Proc. 3 015001
[16] Rullier-Albenque F, Colson D, Forget A and Alloul H 2009 Phys. Rev. Lett. 103 057001
[17] Litvinchuk A P, Hadjiev V G, Iliev M N, Lv B, Guloy A M and Chu C W 2008 Phys. Rev. B 78 060503
[18] Chauvière L, Gallais Y, Cazayous M, Sacuto A, Méasson M A, Colson D and Forget A 2009 Phys. Rev. B 80 094504
[19] Lv W, Wu J and Phillips P 2009 Phys. Rev. B 80 224506
[20] Klemmens P G 1966 Phys. Rev. 148 845
[21] Menéndez J and Cardona M 1984 Phys. Rev. B 29 2051
[22] Dai Y M, Xu B, Shen B, Xiao H, Lobo R P S M and Qiu X G 2012 Chin. Phys. B 21 077403
[23] Yu S L and Li J X 2013 Chin. Phys. B 22 087411
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[4] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[7] High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力). Chin. Phys. B, 2022, 31(3): 037801.
[8] Raman phonon anomalies in Sr(Fe1-xCox)2As2
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正). Chin. Phys. B, 2022, 31(2): 027401.
[9] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[10] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[11] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[12] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[13] Fractal microstructure of Ag film via plasma discharge as SERS substrates
Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平). Chin. Phys. B, 2021, 30(12): 125201.
[14] Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2
Tao Xie(谢涛), Chang Liu(刘畅), Tom Fennell, Uwe Stuhr, Shi-Liang Li(李世亮), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2021, 30(12): 127402.
[15] Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe
Jinhua Wang(王晋花), Qing Li(李庆), Wei Xie(谢威), Guanyu Chen(陈冠宇), Xiyu Zhu(祝熙宇), and Hai-Hu Wen(闻海虎). Chin. Phys. B, 2021, 30(10): 107402.
No Suggested Reading articles found!