Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 077401    DOI: 10.1088/1674-1056/ac4f51

SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes

Xiao-Lei Zhang(张晓蕾)1,2,†, Jie Zhang(张洁)3, Yuan Luo(罗元)1, and Jia Ran(冉佳)1,2
1 Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2 Postdoctoral Research Center of Chongqing Key Laboratory of Optoelectronic Information Sensing and Transmission Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
3 Key Laboratory of Optoelectronic Technology&System, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
Abstract  A two-dimensional (2D) surface-enhanced Raman scattering (SERS) substrate is fabricated by decorating carbon nanotube (CNT) films with Ag nanoparticles (AgNPs) in different sizes, via simple and low-cost chemical reduction method and self-assembling method. The change of Raman and SERS activity of carbon nanotubes/Ag nanoparticles (CNTs/AgNPs) composites with varying size of AgNPs are investigated by using rhodamine 6G (R6G) as a probe molecule. Meanwhile, the scattering cross section of AgNPs and the distribution of electric field of CNTs/AgNPs composite are simulated through finite difference time domain (FDTD) method. Surface plasmon resonance (SPR) wavelength is redshifted as the size of AgNPs increases, and the intensity of SERS and electric field increase with AgNPs size increasing. The experiment and simulation results show a Raman scattering enhancement factor (EF) of 108 for the hybrid substrate.
Keywords:  Raman spectroscopy      surface-enhanced Raman scattering (SERS)      carbon nanotubes      silver nanoparticles  
Received:  15 December 2021      Revised:  19 January 2022      Accepted manuscript online:  27 January 2022
PACS:  74.25.nd (Raman and optical spectroscopy)  
  78.30.-j (Infrared and Raman spectra)  
  36.20.Ng (Vibrational and rotational structure, infrared and Raman spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61875024), the Natural Science Foundation of Chongqing, China (Grant Nos. cstc2019jcyjmsxmX0639 and cstc2020jcyj-msxm0605), and the Scientific and Technology Research Program of Chongqing Municipal Education Commission, China (Grant Nos. KJQN202000648 and KJQN201900602).
Corresponding Authors:  Xiao-Lei Zhang     E-mail:

Cite this article: 

Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳) SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes 2022 Chin. Phys. B 31 077401

[1] Raman C V and Krishnan K S 1928 Nature 121 501
[2] Fleischmann M, Hendra P J and McQuillan A J 1974 Chem. Phys. Lett. 26 163
[3] Park H J, Hwang K O and Kim E S 2002 J. Microbiol. Biotechnol. 12 706
[4] Chen Y and Liu L 2014 Plasmonics in Biology and Medicine XI 895702 8957
[5] He L L, Kim J N and Li H 2008 J. Agric. Food Chem. 56 9843
[6] Liu B, Zhou P, Liu X M, Sun X, Li H and Lin M S 2013 Food Bioprocess Tech. 6 710
[7] Chen L M and Liu Y N 2011 ACS Appl. Mater. Interfaces 3 3091
[8] Bartlett P and Mahajan S 2012 Advances in Electrochemical Science and Engineering:Bioelectrochemistry 13
[9] Schlücker S 2014 Angew. Chem. Int. Ed. 53 4756
[10] Kneipp J, Kneipp H and Kneipp K 2008 Chem. Soc. Rev. 37 1052
[11] Kneipp K, Wana Y and Kneipp H 1997 Phys. Rev. Lett. 78 1667
[12] Campion A and Kambhampati P 1998 Chem. Soc. Rev. 27 241
[13] Moskovits M 2005 J. Raman Spectrosc. 36 485
[14] Tame M S, McEnery K R, Ozdemir S K, Lee J, Maier S A and Kim M S 2013 Nat. Phys. 9 329
[15] Lin K, Yi J, Hu S, Liu B, Liu J, Wang X and Ren B 2016 J. Phys. Chem. C 120 20806
[16] Benz F, Chikkaraddy R, Salmon A, Ohadi H, Nijs B, Mertens J, Carnegie C, Bowman W R and Baumberg J J 2016 J. Phys. Chem. Lett. 7 2264
[17] Cassar R N, Graham D, Larmour I, Wark A W and Faulds K 2014 Vib. Spectrosc. 71 41
[18] Lin W H, Cao E, Zhang L Q, Xu X F, Song Y Z, Liang W J and Sun M T 2018 Nanoscale 10 5482
[19] Wang J G, Cao E, Lin W and Sun M T 2020 Appl. Spectrosc. Rev. 55 558
[20] Cao Y, Cheng Y Q and Sun M T 2021 Appl. Spectrosc. Rev. 1
[21] Gong T C, Zhu Y, Zhang J, Ren W J, Quan J M and Wang N 2015 Carbon 87 385
[22] Ding G, Xie S, Liu Y, Wang L and Xu F G 2015 Appl. Surf. Sci. 345 310
[23] Hsu K C and Chen D H 2015 ACS Appl. Mater. Inter. 7 27571
[24] Zhang J, Zhang X L, Ding Y M and Zhu Y 2016 Appl. Opt. 55 9105
[25] Zhai Y, Yang H, Zhang S N, Li J H, Shi K X and Jin F J 2021 J. Mater. Chem. C. 9 6823
[26] Guo T J, Ding F S, Li D L, Zhang W, Cao L R and Liu Z M 2019 Appl. Sci. 9 398
[27] Sun N, Wang Z K, Jiang M and Zhang J 2021 Opt. Mater. Expr. 11 1321
[28] Singh D K, Iyer P K and Giri P K 2012 Carbon 50 4495
[29] Bondarev I V and Gulyuk A V 2015 Superlattice Microst. 87 103
[30] Zhang J, Zhang X L, Chen S M, Gong T C and Zhu Y 2016 Carbon 100 395
[31] Liu C D, Wang L, Guo Y, Gao X, Xu Y Y, Wei Q, Man B Y and Yang C 2019 Appl. Surf. Sci. 487 1077
[32] Xu Y R, Zhao X G, Jiang J and Zhang X 2019 Nanoscale 11 7572
[33] Wei H N, Peng Z S, Yang C, Tian Y, Sun L F, Wang G T and Liu M 2021 Nanomaterials 11
[34] Lee P C and Meisel D 1982 J. Phys. Chem. 86 3391
[35] Cui S M, Pu H H, Lu G.H, Wen Z H, Mattson E C C and Chen W J H 2012 ACS Appl. Mater. Inter. 4 4898
[36] Rance G A, Dan H M, Nicholas R J and Khlobystov A N 2010 Chem. Phys. Lett. 19 493
[37] Mohammed M K A, Ahmed D S and Mohammad M R 2019 Mater. Res. Express 6 055404
[38] Kudin K N, Ozbas B, Schniepp H C, Prud-Homme R K, Aksay I A and Car R 2008 Nano Lett. 8 36
[39] Zhang J, Fan T, Zhang X L, Lai C H and Zhu Y 2014 Appl. Opt. 53 1159
[40] Le Ru E C, Blackie E, Meyer M and Etchegoin P G 2007 J. Phys. Chem. C 111 13794
[41] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[42] Oubre C and Nordlander P 2005 J. Phys. Chem. B 109 10042
[43] Bohren F C and Huffman D R 1983 Wiley
[44] Pinchuk A, Hilger A, Plessen G V and Kreibig U 2004 Nanotechnology 15 1890
[45] Sujit K G and Tarasankar P 2007 Chem. Rev. 107 4797
[46] Cui X, Dong L, Zhang W, Wu W, Tang Y and Erni D 2010 Appl. Phys. B. 101 601
[47] Zhao Y, Chen G, Du Y, Xu J, Wu S, Qu Y and Zhu Y 2014 Nanoscale 6 13754
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[5] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[6] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[7] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[8] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[9] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[10] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[11] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[12] Observation of large in-plane anisotropic transport in van der Waals semiconductor Nb2SiTe4
Kaiyao Zhou(周楷尧), Jun Deng(邓俊), Long Chen(陈龙), Wei Xia(夏威), Yanfeng Guo(郭艳峰), Yang Yang(杨洋), Jian-Gang Guo(郭建刚), and Liwei Guo(郭丽伟). Chin. Phys. B, 2021, 30(8): 087202.
[13] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[14] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[15] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
No Suggested Reading articles found!