CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes |
Xiao-Lei Zhang(张晓蕾)1,2,†, Jie Zhang(张洁)3, Yuan Luo(罗元)1, and Jia Ran(冉佳)1,2 |
1 Chongqing Municipal Level Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 2 Postdoctoral Research Center of Chongqing Key Laboratory of Optoelectronic Information Sensing and Transmission Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 3 Key Laboratory of Optoelectronic Technology&System, Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China |
|
|
Abstract A two-dimensional (2D) surface-enhanced Raman scattering (SERS) substrate is fabricated by decorating carbon nanotube (CNT) films with Ag nanoparticles (AgNPs) in different sizes, via simple and low-cost chemical reduction method and self-assembling method. The change of Raman and SERS activity of carbon nanotubes/Ag nanoparticles (CNTs/AgNPs) composites with varying size of AgNPs are investigated by using rhodamine 6G (R6G) as a probe molecule. Meanwhile, the scattering cross section of AgNPs and the distribution of electric field of CNTs/AgNPs composite are simulated through finite difference time domain (FDTD) method. Surface plasmon resonance (SPR) wavelength is redshifted as the size of AgNPs increases, and the intensity of SERS and electric field increase with AgNPs size increasing. The experiment and simulation results show a Raman scattering enhancement factor (EF) of 108 for the hybrid substrate.
|
Received: 15 December 2021
Revised: 19 January 2022
Accepted manuscript online: 27 January 2022
|
PACS:
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
36.20.Ng
|
(Vibrational and rotational structure, infrared and Raman spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61875024), the Natural Science Foundation of Chongqing, China (Grant Nos. cstc2019jcyjmsxmX0639 and cstc2020jcyj-msxm0605), and the Scientific and Technology Research Program of Chongqing Municipal Education Commission, China (Grant Nos. KJQN202000648 and KJQN201900602). |
Corresponding Authors:
Xiao-Lei Zhang
E-mail: zhangxiaolei@cqupt.edu.cn
|
Cite this article:
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳) SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes 2022 Chin. Phys. B 31 077401
|
[1] Raman C V and Krishnan K S 1928 Nature 121 501 [2] Fleischmann M, Hendra P J and McQuillan A J 1974 Chem. Phys. Lett. 26 163 [3] Park H J, Hwang K O and Kim E S 2002 J. Microbiol. Biotechnol. 12 706 [4] Chen Y and Liu L 2014 Plasmonics in Biology and Medicine XI 895702 8957 [5] He L L, Kim J N and Li H 2008 J. Agric. Food Chem. 56 9843 [6] Liu B, Zhou P, Liu X M, Sun X, Li H and Lin M S 2013 Food Bioprocess Tech. 6 710 [7] Chen L M and Liu Y N 2011 ACS Appl. Mater. Interfaces 3 3091 [8] Bartlett P and Mahajan S 2012 Advances in Electrochemical Science and Engineering:Bioelectrochemistry 13 [9] Schlücker S 2014 Angew. Chem. Int. Ed. 53 4756 [10] Kneipp J, Kneipp H and Kneipp K 2008 Chem. Soc. Rev. 37 1052 [11] Kneipp K, Wana Y and Kneipp H 1997 Phys. Rev. Lett. 78 1667 [12] Campion A and Kambhampati P 1998 Chem. Soc. Rev. 27 241 [13] Moskovits M 2005 J. Raman Spectrosc. 36 485 [14] Tame M S, McEnery K R, Ozdemir S K, Lee J, Maier S A and Kim M S 2013 Nat. Phys. 9 329 [15] Lin K, Yi J, Hu S, Liu B, Liu J, Wang X and Ren B 2016 J. Phys. Chem. C 120 20806 [16] Benz F, Chikkaraddy R, Salmon A, Ohadi H, Nijs B, Mertens J, Carnegie C, Bowman W R and Baumberg J J 2016 J. Phys. Chem. Lett. 7 2264 [17] Cassar R N, Graham D, Larmour I, Wark A W and Faulds K 2014 Vib. Spectrosc. 71 41 [18] Lin W H, Cao E, Zhang L Q, Xu X F, Song Y Z, Liang W J and Sun M T 2018 Nanoscale 10 5482 [19] Wang J G, Cao E, Lin W and Sun M T 2020 Appl. Spectrosc. Rev. 55 558 [20] Cao Y, Cheng Y Q and Sun M T 2021 Appl. Spectrosc. Rev. 1 [21] Gong T C, Zhu Y, Zhang J, Ren W J, Quan J M and Wang N 2015 Carbon 87 385 [22] Ding G, Xie S, Liu Y, Wang L and Xu F G 2015 Appl. Surf. Sci. 345 310 [23] Hsu K C and Chen D H 2015 ACS Appl. Mater. Inter. 7 27571 [24] Zhang J, Zhang X L, Ding Y M and Zhu Y 2016 Appl. Opt. 55 9105 [25] Zhai Y, Yang H, Zhang S N, Li J H, Shi K X and Jin F J 2021 J. Mater. Chem. C. 9 6823 [26] Guo T J, Ding F S, Li D L, Zhang W, Cao L R and Liu Z M 2019 Appl. Sci. 9 398 [27] Sun N, Wang Z K, Jiang M and Zhang J 2021 Opt. Mater. Expr. 11 1321 [28] Singh D K, Iyer P K and Giri P K 2012 Carbon 50 4495 [29] Bondarev I V and Gulyuk A V 2015 Superlattice Microst. 87 103 [30] Zhang J, Zhang X L, Chen S M, Gong T C and Zhu Y 2016 Carbon 100 395 [31] Liu C D, Wang L, Guo Y, Gao X, Xu Y Y, Wei Q, Man B Y and Yang C 2019 Appl. Surf. Sci. 487 1077 [32] Xu Y R, Zhao X G, Jiang J and Zhang X 2019 Nanoscale 11 7572 [33] Wei H N, Peng Z S, Yang C, Tian Y, Sun L F, Wang G T and Liu M 2021 Nanomaterials 11 [34] Lee P C and Meisel D 1982 J. Phys. Chem. 86 3391 [35] Cui S M, Pu H H, Lu G.H, Wen Z H, Mattson E C C and Chen W J H 2012 ACS Appl. Mater. Inter. 4 4898 [36] Rance G A, Dan H M, Nicholas R J and Khlobystov A N 2010 Chem. Phys. Lett. 19 493 [37] Mohammed M K A, Ahmed D S and Mohammad M R 2019 Mater. Res. Express 6 055404 [38] Kudin K N, Ozbas B, Schniepp H C, Prud-Homme R K, Aksay I A and Car R 2008 Nano Lett. 8 36 [39] Zhang J, Fan T, Zhang X L, Lai C H and Zhu Y 2014 Appl. Opt. 53 1159 [40] Le Ru E C, Blackie E, Meyer M and Etchegoin P G 2007 J. Phys. Chem. C 111 13794 [41] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302 [42] Oubre C and Nordlander P 2005 J. Phys. Chem. B 109 10042 [43] Bohren F C and Huffman D R 1983 Wiley [44] Pinchuk A, Hilger A, Plessen G V and Kreibig U 2004 Nanotechnology 15 1890 [45] Sujit K G and Tarasankar P 2007 Chem. Rev. 107 4797 [46] Cui X, Dong L, Zhang W, Wu W, Tang Y and Erni D 2010 Appl. Phys. B. 101 601 [47] Zhao Y, Chen G, Du Y, Xu J, Wu S, Qu Y and Zhu Y 2014 Nanoscale 6 13754 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|