Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 034202    DOI: 10.1088/1674-1056/ac833e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers

Wei Liu(刘伟)1,2,3, Shuai Ren(任帅)1, Pengfei Ma(马鹏飞)1,2,3,†, and Pu Zhou(周朴)1
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
2 Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China;
3 Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
Abstract  Impact of amplified spontaneous emission (ASE) noise on the stimulated Raman scattering (SRS) threshold of high-power fiber amplifiers is demonstrated numerically through a spectral evolution approach. The simulation results confirm that ASE noise in the Raman wavelength band could reduce the SRS threshold of high-power fiber amplifiers significantly. As for ASE noise originated the main amplifier, it becomes stronger and reduces the SRS threshold at shorter operation wavelength below 1052 nm. As for ASE noise originated from the seed laser, it reduces the SRS threshold at different operation wavelength under the condition that the Raman ratio is over -90 dB in the seed laser. The theoretical method and results in this work could provide a well reference to extend the operation wavelength of high-power fiber lasers.
Keywords:  high-power fiber amplifiers      amplified spontaneous emission      stimulated Raman scattering  
Received:  07 June 2022      Revised:  20 July 2022      Accepted manuscript online:  22 July 2022
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.65.Dr (Stimulated Raman scattering; CARS)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62005313 and 62061136013).
Corresponding Authors:  Pengfei Ma     E-mail:  shandapengfei@126.com

Cite this article: 

Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴) Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers 2023 Chin. Phys. B 32 034202

[1] Richardson D J, Nilsson J and Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63
[2] Zervas M N and Codemard C A 2014 IEEE J. Sel. Top. Quantum Electron. 20 0904123
[3] Zhou P, Leng J, Xiao H, Ma P, Xu J, Liu W, Yao T, Zhang H, Huang L and Pan Z 2021 Chin. J. Lasers 48 2000001 (in Chinese)
[4] An Y, Pan Z, Yang H. Huang L, Ma P, Yan Z, Jiang Z and Zhou P 2021 Acta Phys. Sin. 70 204204 (in Chinese)
[5] Lin X, Zhang Z, Xing Y, Chen G, Liao L, Peng J, Li H, Dai N and Li J 2022 Acta Phys. Sin. 71 034205 (in Chinese)
[6] Zhou T, Liang X, Li C, Zhao L, Wang J and Jing F 2016 Chin. Phys. Lett. 33 124205
[7] Zheng Y, Yang Y, Wang J, Hu M, Liu G, Zhao X, Chen X, Liu K, Zhao C, He B and Zhou J 2016 Opt. Express 24 12063
[8] Runcorn T H, Görlitz F G, Murray R T and Kelleher E J R 2018 IEEE J. Sel. Top. Quantum Electron. 24 1400208
[9] Zervas M N 2019 Opt. Express 27 19019
[10] Jauregui C, Otto H J, Stutzki F, Limpert J and Tunnermann A 2015 Opt. Express 23 20203
[11] Liu W, Ma P, Lv H, Xu J, Zhou P and Jiang Z 2016 Opt. Express 24 8708
[12] Ren S, Lai W, Wang G, Li W, Song J, Chen Y, Ma P, Liu W and Zhou P 2022 Opt. Express 30 7845
[13] Desurvire E and Simpson J R 1989 J. Lightw. Technol. 7 835
[14] Kurkov A S 2007 Laser Phys. Lett. 4 93
[15] Beier F, Otto H J, Jauregui C, de Vries O, Schreiber T, Limpert J, Eberhardt R and Tünnermann A 2014 Opt. Lett. 39 3725
[16] Tian J, Xiao Q, Li D, Liu Z, Yu W, Yan P and Gong M 2020 J. Opt. Soc. Am. B 37 2514
[17] Chu Q, Shu Q, Liu Y, Tao R, Yan D, Lin H, Wang J and Jing F 2020 Opt. Lett. 45 6502
[18] Kramer R G, Moller F, Matzdorf C, Goebel T A, Strecker M, Heck M, Richter D, Plotner M, Schreiber T, Tunnermann A and Nolte S 2020 Opt. Lett. 45 1447
[19] Huang Z, Shu Q, Tao R, Chu Q, Luo Y, Yan D, Feng X, Liu Y, Wu W, Zhang H, Lin H, Wang J and Jing F 2021 IEEE Photon. Technol. Lett. 33 1181
[20] Yang B, Wang P, Zhang H, Xi X, Shi C, Wang X and Xu X 2021 Opt. Express 29 26366
[21] Ma P, Xiao H, Liu W, Zhang H, Wang X, Leng J and Zhou P 2021 High Power Laser Sci. Eng. 9 e45
[22] Liu W, Ma P, Lv H, Xu J, Zhou P and Jiang Z 2016 Opt. Express 24 26715
[23] Liu W, Ma P, Zhou P and Jiang Z 2020 Opt. Express 28 593
[24] Wang M, Wang Z, Liu L, Hu Q, Xiao H and Xu X 2019 Photon. Res. 7 167
[25] Jiao K, Shen H, Guan Z, Yang F and Zhu R 2020 Opt. Express 28 6048
[26] Naderi N A, Dajani I and Flores A 2016 Opt. Lett. 41 1018
[1] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[2] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[3] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[4] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
[5] Demonstration of multi-Watt all-fiber superfluorescent source operating near 980 nm
Yankun Ren(任彦锟), Jianqiu Cao(曹涧秋), Hanyuan Ying(应汉辕), Heng Chen(陈恒), Zhiyong Pan(潘志勇), Shaojun Du(杜少军), Jinbao Chen(陈金宝). Chin. Phys. B, 2018, 27(3): 030703.
[6] Raman gains of ADP and KDP crystals
Zhou Hai-Liang (周海亮), Zhang Qing-Hua (张清华), Wang Bo (王波), Xu Xin-Guang (许心光), Wang Zheng-Ping (王正平), Sun Xun (孙洵), Zhang Fang (张芳), Zhang Li-Song (张立松), Liu Bao-An (刘宝安), Chai Xiang-Xu (柴向旭). Chin. Phys. B, 2015, 24(4): 044206.
[7] Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer
A. Hariri, S. Sarikhani. Chin. Phys. B, 2015, 24(4): 043201.
[8] Effect of different metal-backed waveguides on amplified spontaneous emission
Zhang Bo (张波), Hou Yan-Bing (侯延冰), Lou Zhi-Dong (娄志东), Teng Feng (滕枫), Liu Xiao-Jun (刘小君), Hu Bing (胡兵), Meng Ling-Chuan (孟令川), Wu Wen-Bin (武文彬 ). Chin. Phys. B, 2012, 21(8): 084212.
[9] Analytical model of signal amplification in silicon waveguides
Meng Fan(孟凡), Yu Chong-Xiu(余重秀), and Yuan Jin-Hui(苑金辉) . Chin. Phys. B, 2012, 21(7): 074207.
[10] Nonlinear performances of dual-pump amplifiers in silicon waveguides
Meng Fan(孟凡), Yu Chong-Xiu(余重秀), Deng Yun-Yi(邓云逸), and Yuan Jin-Hui(苑金辉) . Chin. Phys. B, 2012, 21(4): 044202.
[11] The stimulated Raman scattering competition between solute and solvent in Rhodamine B solution
Fang Wen-Hui(房文汇), Li Zuo-Wei(里佐威), Sun Cheng-Lin(孙成林), Li Zhan-Long(李占龙), Song Wei(宋薇), Men Zhi-Wei(门志伟), and He Li-Qiao(何丽桥) . Chin. Phys. B, 2012, 21(3): 034211.
[12] Amplified spontaneous emission from metal-backed poly[2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylenevinylene] film
Zhang Bo (张波), Hou Yan-Bing (侯延冰), Teng Feng (滕枫), Lou Zhi-Dong (娄志东), Liu Xiao-Jun (刘小君), Hu Bing (胡兵), Wu Wen-Bin (武文彬). Chin. Phys. B, 2011, 20(7): 077803.
[13] Solvent-vapour treatment induced performance enhancement of amplified spontaneous emission based on poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1, 4-phenylene vinylene]
Zhang Bo(张波), Hou Yan-Bing(侯延冰), Teng Feng(滕枫), Lou Zhi-Dong(娄志东), Liu Xiao-Jun(刘小君), Hu Bing(胡兵), and Wu Wen-Bin(武文彬). Chin. Phys. B, 2011, 20(5): 054208.
[14] Stimulated supercontinuum-radiation generation of carbon disulfide by all-trans-β-carotene fluorescence enhancement effect in liquid core optical fibre
Men Zhi-Wei(门志伟), Fang Wen-Hui(房文汇), Li Zuo-Wei(里佐威), Qu Guan-Nan(曲冠男),Gao Shu-Qin(高淑琴), Lu Guo-Hui(陆国会),Yang Jian-Ge(杨健戈), and Sun Cheng-Lin(孙成林). Chin. Phys. B, 2010, 19(8): 084206.
[15] Generation and characterization of millimeter-scale plasmas for the research of laser plasma interactions on Shenguang-III prototype
Li Zhi-Chao(李志超), Zheng Jian(郑坚), Ding Yong-Kun(丁永坤), Yin Qiang(尹强), Jiang Xiao-Hua(蒋小华), Li San-Wei(李三伟), Guo Liang(郭亮), Yang Dong(杨冬), Wang Zhe-Bin(王哲斌), Zhang Huan(章欢), Liu Yong-Gang(刘永刚), Zhan Xia-Yu(詹夏宇), and Tang Qi(唐琦). Chin. Phys. B, 2010, 19(12): 125202.
No Suggested Reading articles found!