Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 027501    DOI: 10.1088/1674-1056/24/2/027501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum phase transition and Coulomb blockade effect in triangular quantum dots with interdot capacitive and tunnel couplings

Xiong Yong-Chen (熊永臣)a, Wang Wei-Zhong (王为忠)b c, Yang Jun-Tao (杨俊涛)a, Huang Hai-Ming (黄海铭)a
a School of Science, Hubei University of Automotive Technology (HUAT), Shiyan 442002, China;
b Department of Physics, Wuhan University, Wuhan 430072, China;
c Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan 430072, China
Abstract  The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method. We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t. For small t, three dots form a local spin doublet. As t increases, due to the competition between V and t, there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet. When t is absent, the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage. While for sufficient t, the antiferromagnetic spin correlation between dots is enhanced, and the conductance is strongly suppressed for the bonding state is almost doubly occupied.
Keywords:  quantum phase transition      Coulomb blockade effect      triangular quantum dots      strongly correlated system  
Received:  16 August 2014      Revised:  26 September 2014      Accepted manuscript online: 
PACS:  75.20.Hr (Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874132 and 11174228) and the Doctoral Scientific Research Foundation of HUAT (Grant No. BK201407). One of the authors (Huang Hai-Ming) supported by the Scientific Research Items Foundation of Educational Committee of Hubei Province, China (Grant No. Q20131805).
Corresponding Authors:  Xiong Yong-Chen     E-mail:  xiongyc_lx@huat.edu.cn

Cite this article: 

Xiong Yong-Chen (熊永臣), Wang Wei-Zhong (王为忠), Yang Jun-Tao (杨俊涛), Huang Hai-Ming (黄海铭) Quantum phase transition and Coulomb blockade effect in triangular quantum dots with interdot capacitive and tunnel couplings 2015 Chin. Phys. B 24 027501

[1] Girvin S M, Glazman L I, Jonson M, Penn D R and Stiles M D 1990 Phys. Rev. Lett. 64 3183
[2] Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkoski M, Sethna J P, Abruna H D, McEuen P L and Ralph D Cn 2002 Nature 417 723
[3] Silvestrov P G and Imry Y 2000 Phys. Rev. Lett. 85 2565
[4] Bułka B R and Stefański P 2001 Phys. Rev. Lett. 86 5128
[5] Luo H G, Xiang T, Wang X Q, Su Z B and Yu L 2004 Phys. Rev. Lett. 92 256602
[6] de Guevara M L L and Orellana P A 2006 Phys. Rev. B 73 205303
[7] Ding G H, Kim C K and Nahm K 2005 Phys. Rev. B 71 205313
[8] Chang A M and Chen J C 2009 Rep. Prog. Phys. 72 096501
[9] Žitko R, Lim J S, López R, Martinek J and Simon P 2012 Phys. Rev. Lett. 108 166605
[10] Vojta M, Bulla R and Hofstetter W 2002 Phys. Rev. B 65 140405
[11] Chen J C, Chang A M and Melloch M R 2004 Phys. Rev. Lett. 92 176801
[12] Dias da Silva L G G V, Sandler N P, Ingersent K and Ulloa S E 2006 Phys. Rev. Lett. 97 096603
[13] Logan D E, Wright C J and Galpin M R 2009 Phys. Rev. B 80 125117
[14] Wong A, Lane W B, Dias da Silva L G G V, Ingersent K, Sandler N and Ulloa S E 2012 Phys. Rev. B 85 115316
[15] Tosi L and Aligia A A 2011 Phys. Status Solidi b 248 732
[16] Nisikawa Y and Oguri A 2006 Phys. Rev. B 73 125108
[17] Lobos A M and Aligia A A 2006 Phys. Rev. B 74 165417
[18] Vernek E, Orellana P A and Ulloa S E 2010 Phys. Rev. B 82 165304
[19] Žitko R and Bonca J 2006 Phys. Rev. B 74 045312
[20] Yang F B, Wu S Q, Yan C H, Huang R, Hou T and Bi A H 2008 Chin. Phys. B 17 1383
[21] Vidan A, Westervelt R M, Stopa M, Hanson M and Gossard A C 2004 Appl. Phys. Lett. 85 3602
[22] Korkusinski M, Gimenez I P, Hawrylak P, Gaudreau L, Studenikin S A and Sachrajda A S 2007 Phys. Rev. B 75 115301
[23] Gaudreau L, Studenikin S A, Sachrajda A S, Zawadzki P, Kam A, Lapointe J, Korkusinski M and Hawrylak P 2006 Phys. Rev. Lett. 97 036807
[24] Amaha S, Hatano T, Kubo T, Tokura Y, Austing D G and Tarucha S 2008 Phsyica E 40 1322
[25] Amaha S, Hatano T, Teraoka S, Tarucha S, Nakata Y, Miyazaki T, Oshima T, Usuki T and Yokoyama N 2008 Appl. Phys. Lett. 92 202109
[26] Gaudreau L, Kam A, Granger G, Studenikin S A, Zawadzki P and Sachrajda A S 2009 Appl. Phys. Lett. 95 193101
[27] Cockins L, Miyahara Y, Bennett S D, Clerk A A, Studennikin S, Poole P, Sachrajda A and Grutter P 2010 Proc. Natl Acad. Sci. USA 107 9496
[28] Amaha S, Hatano T, Tamura H, Teraoka S, Kubo T, Tokura Y, Austing D G and Tarucha S 2012 Phys. Rev. B 85 081301
[29] Jiang Z T, Sun Q F and Wang Y P 2005 Phys. Rev. B 72 045332
[30] Mitchell A K, Logan D E and Krishnamurthy H R 2011 Phys. Rev. B 84 035119
[31] Žitko R, Bonča J, Ramšak A and Rejec T 2006 Phys. Rev. B 73 153307
[32] Baruselli P P, Requist R, Fabrizio M and Tosatti E 2013 Phys. Rev. Lett. 111 047201
[33] Chiappe G, Anda E V, Ribeiro L C and Louis E 2010 Phys. Rev. B 81 041310
[34] Wang W Z 2007 Phys. Rev. B 76 115114
[35] Žitko R and Bonca J 2007 Phys. Rev. B 76 241305
[36] Mitchell A K, Jarrold T F and Logan D E 2009 Phys. Rev. B 79 085124
[37] Mitchell A K, Jarrold T F, Calpin M R and Logan D E 2013 J. Phys. Chem. B 117 12777
[38] Wang W Z 2008 Phys. Rev. B 78 235316
[39] Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126
[40] Oguri A, Amaha S, Nishikawa Y, Numata T, Shimamoto M, Hewson A C and Tarucha S 2011 Phys. Rev. B 83 205304
[41] Numata T, Nisikawa Y, Oguri A and Hewson A C 2009 Phys. Rev. B 80 155330
[42] Busl M, Sánchez R and Platero G 2010 Phys. Rev. B 81 121306
[43] Pöltl C, Emary C and Brandes T 2009 Phys. Rev. B 80 115313
[44] Bułka B R, Kostyrko T and Luczak J 2011 Phys. Rev. B 83 035301
[45] Xiong Y C, Huang J and Wang W Z 2012 J. Phys.: Condens. Matter 24 455604
[46] Xiong Y C and Wang W Z 2012 Chin. Phys. B 21 117501
[47] Krishna-Murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1003
[48] Krishna-Murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1044
[49] Costi T A, Hewson A C and Zlatic V 1994 J. Phys.: Condens. Matter 6 2519
[50] Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601
[51] Hofstetter W 2000 Phys. Rev. Lett. 85 1508
[52] Wilhelm U, Schmid J, Weis J and Klitzing K V 2002 Physica E 14 385
[53] Ding G H, Ye F and Dong B 2009 J. Phys.: Condens. Matter 21 455303
[54] Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491
[55] Sindel M, Silva A, Oreg Y and von Delft J 2005 Phys. Rev. B 72 125316
[56] Meden V and Marquardt F 2006 Phys. Rev. Lett. 96 146801
[57] Langreth D C 1966 Phys. Rev. 150 516
[58] Ng T K and Lee P A 1988 Phys. Rev. Lett. 61 1768
[1] Magnetic ground state of plutonium dioxide: DFT+U calculations
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(2): 027103.
[2] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[3] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[4] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[5] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[6] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[7] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[8] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[9] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[10] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[11] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[12] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[13] Relevance of 3d multiplet structure in nickelate and cuprate superconductors
Mi Jiang(蒋密). Chin. Phys. B, 2021, 30(10): 107103.
[14] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[15] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
No Suggested Reading articles found!