CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Quantum phase transition and Coulomb blockade effect in triangular quantum dots with interdot capacitive and tunnel couplings |
Xiong Yong-Chen (熊永臣)a, Wang Wei-Zhong (王为忠)b c, Yang Jun-Tao (杨俊涛)a, Huang Hai-Ming (黄海铭)a |
a School of Science, Hubei University of Automotive Technology (HUAT), Shiyan 442002, China; b Department of Physics, Wuhan University, Wuhan 430072, China; c Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan 430072, China |
|
|
Abstract The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method. We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t. For small t, three dots form a local spin doublet. As t increases, due to the competition between V and t, there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet. When t is absent, the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage. While for sufficient t, the antiferromagnetic spin correlation between dots is enhanced, and the conductance is strongly suppressed for the bonding state is almost doubly occupied.
|
Received: 16 August 2014
Revised: 26 September 2014
Accepted manuscript online:
|
PACS:
|
75.20.Hr
|
(Local moment in compounds and alloys; Kondo effect, valence fluctuations, heavy fermions)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874132 and 11174228) and the Doctoral Scientific Research Foundation of HUAT (Grant No. BK201407). One of the authors (Huang Hai-Ming) supported by the Scientific Research Items Foundation of Educational Committee of Hubei Province, China (Grant No. Q20131805). |
Corresponding Authors:
Xiong Yong-Chen
E-mail: xiongyc_lx@huat.edu.cn
|
Cite this article:
Xiong Yong-Chen (熊永臣), Wang Wei-Zhong (王为忠), Yang Jun-Tao (杨俊涛), Huang Hai-Ming (黄海铭) Quantum phase transition and Coulomb blockade effect in triangular quantum dots with interdot capacitive and tunnel couplings 2015 Chin. Phys. B 24 027501
|
[1] |
Girvin S M, Glazman L I, Jonson M, Penn D R and Stiles M D 1990 Phys. Rev. Lett. 64 3183
|
[2] |
Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkoski M, Sethna J P, Abruna H D, McEuen P L and Ralph D Cn 2002 Nature 417 723
|
[3] |
Silvestrov P G and Imry Y 2000 Phys. Rev. Lett. 85 2565
|
[4] |
Bułka B R and Stefański P 2001 Phys. Rev. Lett. 86 5128
|
[5] |
Luo H G, Xiang T, Wang X Q, Su Z B and Yu L 2004 Phys. Rev. Lett. 92 256602
|
[6] |
de Guevara M L L and Orellana P A 2006 Phys. Rev. B 73 205303
|
[7] |
Ding G H, Kim C K and Nahm K 2005 Phys. Rev. B 71 205313
|
[8] |
Chang A M and Chen J C 2009 Rep. Prog. Phys. 72 096501
|
[9] |
Žitko R, Lim J S, López R, Martinek J and Simon P 2012 Phys. Rev. Lett. 108 166605
|
[10] |
Vojta M, Bulla R and Hofstetter W 2002 Phys. Rev. B 65 140405
|
[11] |
Chen J C, Chang A M and Melloch M R 2004 Phys. Rev. Lett. 92 176801
|
[12] |
Dias da Silva L G G V, Sandler N P, Ingersent K and Ulloa S E 2006 Phys. Rev. Lett. 97 096603
|
[13] |
Logan D E, Wright C J and Galpin M R 2009 Phys. Rev. B 80 125117
|
[14] |
Wong A, Lane W B, Dias da Silva L G G V, Ingersent K, Sandler N and Ulloa S E 2012 Phys. Rev. B 85 115316
|
[15] |
Tosi L and Aligia A A 2011 Phys. Status Solidi b 248 732
|
[16] |
Nisikawa Y and Oguri A 2006 Phys. Rev. B 73 125108
|
[17] |
Lobos A M and Aligia A A 2006 Phys. Rev. B 74 165417
|
[18] |
Vernek E, Orellana P A and Ulloa S E 2010 Phys. Rev. B 82 165304
|
[19] |
Žitko R and Bonca J 2006 Phys. Rev. B 74 045312
|
[20] |
Yang F B, Wu S Q, Yan C H, Huang R, Hou T and Bi A H 2008 Chin. Phys. B 17 1383
|
[21] |
Vidan A, Westervelt R M, Stopa M, Hanson M and Gossard A C 2004 Appl. Phys. Lett. 85 3602
|
[22] |
Korkusinski M, Gimenez I P, Hawrylak P, Gaudreau L, Studenikin S A and Sachrajda A S 2007 Phys. Rev. B 75 115301
|
[23] |
Gaudreau L, Studenikin S A, Sachrajda A S, Zawadzki P, Kam A, Lapointe J, Korkusinski M and Hawrylak P 2006 Phys. Rev. Lett. 97 036807
|
[24] |
Amaha S, Hatano T, Kubo T, Tokura Y, Austing D G and Tarucha S 2008 Phsyica E 40 1322
|
[25] |
Amaha S, Hatano T, Teraoka S, Tarucha S, Nakata Y, Miyazaki T, Oshima T, Usuki T and Yokoyama N 2008 Appl. Phys. Lett. 92 202109
|
[26] |
Gaudreau L, Kam A, Granger G, Studenikin S A, Zawadzki P and Sachrajda A S 2009 Appl. Phys. Lett. 95 193101
|
[27] |
Cockins L, Miyahara Y, Bennett S D, Clerk A A, Studennikin S, Poole P, Sachrajda A and Grutter P 2010 Proc. Natl Acad. Sci. USA 107 9496
|
[28] |
Amaha S, Hatano T, Tamura H, Teraoka S, Kubo T, Tokura Y, Austing D G and Tarucha S 2012 Phys. Rev. B 85 081301
|
[29] |
Jiang Z T, Sun Q F and Wang Y P 2005 Phys. Rev. B 72 045332
|
[30] |
Mitchell A K, Logan D E and Krishnamurthy H R 2011 Phys. Rev. B 84 035119
|
[31] |
Žitko R, Bonča J, Ramšak A and Rejec T 2006 Phys. Rev. B 73 153307
|
[32] |
Baruselli P P, Requist R, Fabrizio M and Tosatti E 2013 Phys. Rev. Lett. 111 047201
|
[33] |
Chiappe G, Anda E V, Ribeiro L C and Louis E 2010 Phys. Rev. B 81 041310
|
[34] |
Wang W Z 2007 Phys. Rev. B 76 115114
|
[35] |
Žitko R and Bonca J 2007 Phys. Rev. B 76 241305
|
[36] |
Mitchell A K, Jarrold T F and Logan D E 2009 Phys. Rev. B 79 085124
|
[37] |
Mitchell A K, Jarrold T F, Calpin M R and Logan D E 2013 J. Phys. Chem. B 117 12777
|
[38] |
Wang W Z 2008 Phys. Rev. B 78 235316
|
[39] |
Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126
|
[40] |
Oguri A, Amaha S, Nishikawa Y, Numata T, Shimamoto M, Hewson A C and Tarucha S 2011 Phys. Rev. B 83 205304
|
[41] |
Numata T, Nisikawa Y, Oguri A and Hewson A C 2009 Phys. Rev. B 80 155330
|
[42] |
Busl M, Sánchez R and Platero G 2010 Phys. Rev. B 81 121306
|
[43] |
Pöltl C, Emary C and Brandes T 2009 Phys. Rev. B 80 115313
|
[44] |
Bułka B R, Kostyrko T and Luczak J 2011 Phys. Rev. B 83 035301
|
[45] |
Xiong Y C, Huang J and Wang W Z 2012 J. Phys.: Condens. Matter 24 455604
|
[46] |
Xiong Y C and Wang W Z 2012 Chin. Phys. B 21 117501
|
[47] |
Krishna-Murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1003
|
[48] |
Krishna-Murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1044
|
[49] |
Costi T A, Hewson A C and Zlatic V 1994 J. Phys.: Condens. Matter 6 2519
|
[50] |
Meir Y, Wingreen N S and Lee P A 1993 Phys. Rev. Lett. 70 2601
|
[51] |
Hofstetter W 2000 Phys. Rev. Lett. 85 1508
|
[52] |
Wilhelm U, Schmid J, Weis J and Klitzing K V 2002 Physica E 14 385
|
[53] |
Ding G H, Ye F and Dong B 2009 J. Phys.: Condens. Matter 21 455303
|
[54] |
Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491
|
[55] |
Sindel M, Silva A, Oreg Y and von Delft J 2005 Phys. Rev. B 72 125316
|
[56] |
Meden V and Marquardt F 2006 Phys. Rev. Lett. 96 146801
|
[57] |
Langreth D C 1966 Phys. Rev. 150 516
|
[58] |
Ng T K and Lee P A 1988 Phys. Rev. Lett. 61 1768
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|