Abstract High-pressure Raman scattering from hexagonal close-packed (HCP) metals Os and Re have been extended up to 200 GPa, and the pressure-dependent shear modulus C44 has been deduced from the Raman-active mode E2g, which is generated from the adjacent vibration of atoms in hexagonal planes, providing the valuable information about the elastic properties for HCP metals under high pressure. Combined with the available data of HCP metals from previous works, a further study indicates that the ratio would be close to a constant value, 0.01, with increasing atomic number of metals. The results obtained from high-pressure Raman scattering will allow us to probe the elastic anisotropy of the HCP metals at very high pressure.
Fund: We thank Prof. Filippo for helpful discussions. This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11774247 and U2030107) and Sichuan University Innovation Research Program of China (Grant No. 2020SCUNL107).
Corresponding Authors:
Li Lei
E-mail: lei@scu.edu.cn
Cite this article:
Jingyi Liu(刘静仪), Yu Tao(陶雨), Chunmei Fan(范春梅), Binbin Wu(吴彬彬), Qiqi Tang(唐琦琪), and Li Lei(雷力) High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44 2022 Chin. Phys. B 31 037801
[1] Gschneidner K A Jr 1964 Solid State Phys.16 275 [2] Young D A 1975 Phase diagrams of the elements (Berkeley:University of California Press) p. 44 [3] Jeanloz R, Godwal B K and Meade C 1991 Nature349 687 [4] Jong M D, Olmsted D L, Walle A V and Asta M 2012 Phys. Rev. B86 224101 [5] Cynn H, Klepeis J E, Yoo C S and Young D A 2002 Phys. Rev. Lett.88 135701 [6] Occelli F, Farber D L, Badro J, Aracne C M, Teter D M, Hanfland M, Canny B and Couzinet B 2004 Phys. Rev. Lett.93 095502 [7] Kenichi T 2004 Phys. Rev. B70 012101 [8] Weinberger M B, Tolbert S H and Kavner A 2008 Phys. Rev. Lett.100 045506 [9] Armentrout M M and Kavner A 2010 J. Appl. Phys.107 093528 [10] Godwal B K, Yan J, Clark S M and Jeanloz R 2012 J. Appl. Phys.111 112608 [11] Dubrovinsky L, Dubrovinskaia N, Bykova E, Bykov M, Prakapenka V, Prescher C, Glazyrin K, Liermann H P, Hanflfland M, Ekholm M, Feng Q, Pourovskii L V, Katsnelson M I, Wills J M and Abrikosov I A 2015 Nature525 226 [12] Perreault C S, Velisavljevic N and Vohra Y K 2017 Cogent Phys.4 1376899 [13] Vohra Y K, Duclos S J and Ruoff A L 1987 Phys. Rev. B36 9790 [14] Dubrovinsky L, Dubrovinskaia N, Prakapenka V B and Abakumov A M 2012 Nat. Commun.3 1163 [15] Chen H H, He D W, Liu J, Peng F, Li Z, Wang J and Bai L 2010 Eur. Phys. J. B73 321 [16] Sakai T, Yagi T, Ohfuji H, Irifune T, Ohishi Y, Hirao N, Suzuki Y, Kuroda Y, Asakama T and Kanemura T 2015 Rev. Sci. Instrum.86 033905 [17] Wu B B, Lei L, Zhang F, Tang Q Q, Liu S, Pu M F, He D W, Xia Y H, Fang L M, Ohfuji H and Irifune T 2021 Matter Radiat. Extremes6 038401 [18] Liu B, Gu M, Liu X L, Huang S M, Ni C, Li Z R and Wang R B 2010 Chin. Phys. B19 026301 [19] Verma A K, Ravindran P, Rao R S, Godwal B K and Jeanloz R 2003 Bull. Mater. Sci.26 183 [20] Hebbache M and Zemzemi M 2004 Phys. Rev. B70 224107 [21] Evans W J, Lipp M J, Cynn H and Yoo C S 2005 Phys. Rev. B72 094113 [22] Merkel S, Goncharov A F, Mao H K, Gillet P and Hemly R J 2000 Science288 1626 [23] Olijnyk H, Jephcoat A P and Refson K 2001 Europhys. Lett.53 504 [24] Ponosov Y S, Loa I, Mogilenskikh V E and Syassen K 2005 Phys. Rev. B71 220301 [25] Ponosov Y S 2008 Phys. Rev. B78 245106 [26] Goncharov A F, Gregoryanz E, Struzhkin V V, Hemley R J, Mao H K, Boctor N and Huang E 2001 cond-mat/0112404 [27] Qi L, Lei L, Feng L H and Pu M F 2018 Spectrosc. Spect. Anal.38 3764 [28] Qi L, Lei L, Hu Q W, Zhang L L, Pu M F, Ohfuji H and Irifune T 2018 J. Appl. Phys.123 055901 [29] Pantea C, Stroe I, Ledbetter H, Betts J B, Zhao Y, Daemen L L, Cynn H and Migliori A 2009 Phys. Rev. B80 024112 [30] Manghnani M H and Katahara K 1974 Phys. Rev. B9 1421 [31] Lv M B, Cheng Y, Qi Y Y, Ji G F and Piao C G 2012 Physica B407 778 [32] Deng X H, Lu W, Hu Y M and Gu H S 2009 Physica B404 1218 [33] Peng F, Chen D, Fu H Z and Yang X D 2011 Phil. Mag. Lett.91 43 [34] Steinle-Neumann G, Sixrude L and Cohen R E 1999 Phys. Rev. B60 791 [35] Olijnyk H and Jephcoat A P 2002 Metall. Mater. Trans. A33 743 [36] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res.91 4673 [37] Akahama Y and Kawamura H 2004 J. Appl. Phys.96 3748 [38] Pu M F, Zhang F, Liu S, Irifune T and Lei L 2019 Chin. Phys. B28 053102 [39] Liu S, Tang Q Q, Wu B B, Zhang F, Liu J Y, Fan C M and Lei L 2021 Chin. Phys. B30 016301 [40] Klotz S, Chervin J C, Munsch P and Marchand G L 2009 J. Phys. D:Appl. Phys.42 075413 [41] Angel R J, Bujak M, Zhao J, Gatta G D and Jacobsen S D 2007 J. Appl. Cryst.40 26 [42] Metzbower E A 1968 Phys. Status Solidi25 403 [43] Rech G L, Zorzi J E and Perottoni C A 2019 Phys. Rev. B100 174107 [44] Silversmith D J and Averbach B L 1970 Phys. Rev. B1 567 [45] Olijnyk H and Jephcoat A P 2000 J. Phys.:Condens. Matter12 8913 [46] Mao H K, Wu Y, Chen L C and Shu J F 1990 J. Geophys. Res.95 21737 [47] Simmons G and Wang H F 1971 Single Crystal Elastic Constants and Calculated Aggregate Properties:A Handbook (Cambridge:MIT Press) pp. 140-141
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.