Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 027305    DOI: 10.1088/1674-1056/24/2/027305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Synthesis and electrical properties of In2O3(ZnO)m superlattice nanobelt

Tang Xin-Yue (唐欣月)a, Gao Hong (高红)a, Wu Li-Li (武立立)b, Wen Jing (温静)a, Pan Si-Ming (潘思明)a, Liu Xin (刘欣)a, Zhang Xi-Tian (张喜田)a
a Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China;
b Center for Engineering Training and Basic Experimentation, Heilongjiang University of Science and Technology, Harbin 150022, China
Abstract  One-dimensional (1D) In2O3(ZnO)m superlattice nanobelts are synthesized by a chemical vapor deposition method. The formation of the In2O3(ZnO)m superlattice is verified by the high-resolution transmission electron microscopy images. The typical zigzag boundaries could be clearly observed. An additional peak at 614 cm-1 is found in the Raman spectrum, which may correspond to the superlattice structure. The study about the electrical transport properties reveals that the In2O3(ZnO)m nanobelts exhibit peculiar nonlinear I-V characteristics even under the Ohmic contact measurement condition, which are different from the Ohmic behaviors of the In-doped ZnO nanobelts. The photoelectrical measurements show the differences in the photocurrent property between them, and their transport mechanisms are also discussed.
Keywords:  In2O3(ZnO)m      superlattice      electrical properties  
Received:  07 July 2014      Revised:  18 August 2014      Accepted manuscript online: 
PACS:  73.63.Nm (Quantum wires)  
  81.05.Dz (II-VI semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51172058), the Key Project of the Science Technology and Research Project of Education Bureau, Heilongjiang Province, China (Grant No. 12521z012), and the Natural Science Foundation of Heilongjiang Province for Returned Chinese Scholars, China (Grant No. LC2013C17).
Corresponding Authors:  Gao Hong, Zhang Xi-Tian     E-mail:  gaohong65cn@126.com;xtzhangzhang@hotmail.com

Cite this article: 

Tang Xin-Yue (唐欣月), Gao Hong (高红), Wu Li-Li (武立立), Wen Jing (温静), Pan Si-Ming (潘思明), Liu Xin (刘欣), Zhang Xi-Tian (张喜田) Synthesis and electrical properties of In2O3(ZnO)m superlattice nanobelt 2015 Chin. Phys. B 24 027305

[1] Kim H, Lee K and Kwon J H 2006 Appl. Phys. Lett. 88 012103
[2] Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M and Hosono H 2003 Science 300 1269
[3] Zhang J Y, Lang Y, Chu Z Q, Liu X, Wu L L and Zhang X T 2011 CrystEngComm 13 3569
[4] Jie J S, Wang G Z, Han X H and Hou J G 2004 J. Phys. Chem. B 108 17027
[5] Na C W, Bae S Y and Park J H 2005 J. Phys. Chem. B 109 12785
[6] Zhang X T, Lu H Q, Gao H, Wang X J, Xu H Y, Li Q and Hark S K 2009 Cryst. Growth Des. 9 364
[7] Niu B J, Wu L L and Zhang X T 2010 CrystEngComm 12 3305
[8] Wu L L, Zhang X T, Wang Z F, Liang Y and Xu H Y 2008 J. Phys. D: Appl. Phys. 41 195406
[9] Bartolomé J, Maestre D, Cremades A, Amatti M and Piqueras J 2013 Acta Mater. 61 1932
[10] Wang Z L 2004 Mater. Today 6 26
[11] Li D P, Wang G Z, Han X H, Jie J S and Lee S T 2009 J. Phys. Chem. C 113 5417
[12] Li D P, Wang G Z and Han X H 2009 J. Phys. D: Appl. Phys. 42 175308
[13] Jiang W, Gao H, Xu L L, Ma J N, Zhang E, Wei P and Lin J Q 2011 Chin. Phys. B 20 037307
[14] Lang Y, Gao H, Jiang W, Xu L L and Hou H T 2012 Sens. Actuators A 174 43
[15] Zhou J, Gu Y D, Hu Y F, Mai W J, Yeh P H, Bao G, Sood A S, Polla D L and Wang Z L 2009 Appl. Phys. Lett. 94 191103
[16] Wan Q, Huang J, Lu A and Wang T H 2008 Appl. Phys. Lett. 93 103109
[17] Alemán B, Fernández P and Piqueras J 2009 Appl. Phys. Lett. 95 013111
[18] Yan Y F, Da Silva J L F, Wei S H and Al-Jassim M 2007 Appl. Phys. Lett. 90 261904
[19] Berengue O M, Rodrigues A D, Dalmaschio C J, Lanfredi A J C, Leite E R and Chiquito A J C 2010 J. Phys. D: Appl. Phys. 43 045401
[20] Su J, Li H F, Huang Y H, Xing X J, Zhao J and Zhang Y 2011 Nanoscale 3 2182
[21] Zhao S, Salehzadeh O, Alagha S, Kavanagh K L, Watkins S P and Mi Z 2013 Appl. Phys. Lett. 102 073102
[22] Keem K, Kim H, Kim G, Lee J S, Min B 2004 Appl. Phys. Lett. 84 4376
[23] Ramakrishna G and Ghosh H N 2003 Langmuir 19 3006
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[3] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[4] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[5] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[6] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[7] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[10] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[11] Radiation effects of 50-MeV protons on PNP bipolar junction transistors
Yuan-Ting Huang(黄垣婷), Xiu-Hai Cui(崔秀海), Jian-Qun Yang(杨剑群), Tao Ying(应涛), Xue-Qiang Yu(余雪强), Lei Dong(董磊), Wei-Qi Li(李伟奇), and Xing-Ji Li(李兴冀). Chin. Phys. B, 2022, 31(2): 028502.
[12] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[13] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[14] Characterization of low-resistance ohmic contacts to heavily carbon-doped n-type InGaAsBi films treated by rapid thermal annealing
Shu-Xing Zhou(周书星), Li-Kun Ai(艾立鹍), Ming Qi(齐鸣), An-Huai Xu(徐安怀), Jia-Sheng Yan(颜家圣), Shu-Sen Li(李树森), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(2): 027304.
[15] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
No Suggested Reading articles found!