CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices |
Di Liu(刘迪)1,2, Xingyu Wang(王兴玉)1,2, Zezhong Li(李泽众)1,2, Xiaoyan Ma(马肖燕)1,2, and Shiliang Li(李世亮)1,2,3,† |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Uniaxial pressure or strain can introduce a symmetry-breaking distortion on the lattice and may alter the ground states of a material. Compared to hydrostatic pressure, a unique feature of the uniaxial-pressure measurements is that a tensile force can be applied and thus a "negative" pressure can be achieved. In doing so, both ends of the sample are usually glued on the frame of the uniaxial-pressure device. The maximum force that can be applied onto the sample is sometimes limited by the shear strength of the glue, the quality of the interface between the sample and the glue, etc. Here we use focused ion beam to reduce the width of the middle part of the sample, which can significantly increase the effective pressure applied on the sample. By applying this technique to a home-made piezobender-based uniaxial-pressure device, we can easily increase the effective pressure by one or two orders of magnitude as shown by the change of the superconducting transition temperature of an iron-based superconductor. Our method thus provides a possible way to increase the upper limit of the pressure for the uniaxial-pressure devices.
|
Received: 04 November 2022
Revised: 09 December 2022
Accepted manuscript online: 16 December 2022
|
PACS:
|
74.62.Fj
|
(Effects of pressure)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403402, 2021YFA1400401, 2020YFA0406003, and 2017YFA0302903), the National Natural Science Foundation of China (Grant Nos. 11961160699 and 11874401), and the Chinese Academy of Sciences (Grant Nos. XDB33000000 and GJTD-2020-01). |
Corresponding Authors:
Shiliang Li
E-mail: slli@iphy.ac.cn
|
Cite this article:
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮) Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices 2023 Chin. Phys. B 32 047401
|
[1] Shapiro M C, Hlobil P, Hristov A T, Maharaj A V and Fisher I R 2015 Phys. Rev. B 92 235147 [2] Chu J H, Kuo H H, Analytis J G and Fisher I R 2012 Science 337 6095 [3] Riggs S C, Shapiro M, Maharaj A V, Raghu S, Bauer E, Baumbach R, Giraldo-Gallo P, Wartenbe M and Fisher I 2015 Nat. Commun. 6 6425 [4] Kuo H H, Chu J H, Palmstrom J C, Kivelson S A and Fisher I R 2016 Science 352 958 [5] Liu Z, Gu Y, Zhang W, Gong D, Zhang W, Xie T, Lu X, Ma X, Zhang X, Zhang R, Zhu J, Ren C, Shan L, Qiu X, Dai P, Yang Y F, Luo H and Li S 2016 Phys. Rev. Lett. 117 157002 [6] Gu Y, Liu Z, Xie T, Zhang W, Gong D, Hu D, Ma X, Li C, Zhao L, Lin L, Xu Z, Tan G, Chen G, Meng Z Y, Yang Y F, Luo H and Li S 2017 Phys. Rev. Lett. 119 157001 [7] Ishida K, Tsujii M, Hosoi S, Mizukami Y, Ishida S, Iyo A, Eisaki H, Wolf T, Grube K, Löhneysen H, Fernandes R M and Shibauchi T 2020 Proc. Natl. Acad. Sci. USA 117 6424 [8] Ishida K, Hosoi S, Teramoto Y, Usui T, Mizukami Y, Itaka K, Matsuda Y, Watanabe T and Shibauchi T 2020 J. Phys. Soc. Jpn. 89 064707 [9] Bartlett J M, Steppke A, Hosoi S, Noad H, Park J, Timm C, Shibauchi T, Mackenzie A P and Hicks C W 2021 Phys. Rev. X 11 021038 [10] Wiecki P, Frachet M, Haghighirad A A, Wolf T, Meingast C, Heid R and Böohmer A E 2021 Nat. Commun. 12 4824 [11] Xie T, Liu Z, Gu Y, Gong D, Mao H, Liu J, Hu C, Ma X, Yao Y, Zhao L, Zhou X, Schneeloch J, Gu G, Danilkin S, feng Yang Y, Luo H and Li S 2022 J. Phys.: Condens. Matter 34 334001 [12] Wang X, Gong D, Liu B, Ma X, Zhao J, Wang P, Sheng Y, Guo J, Sun L, Zhang W, Lai X, Tan S, Feng Y, and Li S 2022 Chin. Phys. Lett. 39 107101 [13] Mao H C, Gong D L, Ma X Y, Luo H Q, Yang Y F, Shan L and Li S L 2018 Chin. Phys. B 27 087402 [14] Hicks C W, Brodsky D O, Yelland E A, Gibbs A S, Bruin J A N, Barber M E, Edkins S D, Nishimura K, Yonezawa S, Maeno Y and Mackenzie A P 2014 Science 344 6181 [15] Steppke A, Zhao L, Barber M E, Scaffidi T, Jerzembeck F, Rosner H, Gibbs A S, Maeno Y, Simon S H, Mackenzie A P and Hicks C W 2017 Science 355 6321 [16] Stern A, Dzero M, Galitski V M, Fisk Z and Xia J 2017 Nat. Mater. 16 708 [17] Kim H H, Souliou S M, Barber M E, Lefrancois E, Minola M, Tortora M, Heid R, Nandi N, Borzi R A, Garbarino G, Bosak A, Porras J, Loew T, König M, Moll P J W, Mackenzie A P, Keimer B, Hicks C W and Tacon M L 2018 Science 362 1040 [18] Malinowski P, Jiang Q, Sanchez J J, Mutch J, Liu Z, Went P, Liu J, Ryan P J, Kim J W and Chu J H 2020 Nat. Phys. 16 1189 [19] Hicks C W, Barber M E, Edkins S D, Brodsky D O and Mackenzie A P 2014 Rev. Sci. Instrum. 85 065003 [20] Liu Z, Gu Y, Hong W, Xie T, Gong D, Ma X, Liu J, Hu C, Zhao L, Zhou X, Fernandes R M, Yang Y F, Luo H and Li S 2019 Phys. Rev. Research 1 033154 [21] Chen Y, Lu X, Wang M, Luo H and Li S 2011 Supercond. Sci. Technol. 24 065004 [22] Li Y S, Borth R, Hicks C W, Mackenzie A P and Nicklas M 2020 Rev. Sci. Instrum. 91 103903 [23] Ikeda M S, Straquadine J A W, Hristov A T, Worasaran T, Palmstrom J C, Sorensen M, Walmsley P and Fisher I R 2019 Rev. Sci. Instrum. 90 083902 [24] Straquadine J A W, Ikeda M S and Fisher I R 2022 Phys. Rev. X 12 021046 [25] Kissikov T, Sarkar R, Lawson M, Bush B T, Timmons E I, Tanatar M A, Prozorov R, Bud'ko S L, Canfield P C, Fernandes R M and Curro N J 2018 Nat. Commun. 9 1058 [26] Luo Y, Pustogow A, Guzman P, Dioguardi A P, Thomas S M, Ronning F, Kikugawa N, Sokolov D A, Jerzembeck F, Mackenzie A P, Hicks C W, Bauer E D, Mazin I I and Brown S E 2019 Phys. Rev. X 9 021044 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|