Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027401    DOI: 10.1088/1674-1056/ac0cd6
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Raman phonon anomalies in Sr(Fe1-xCox)2As2

Yanxing Yang(杨彦兴)1,2,†, Hewei Zhang(张鹤巍)2, and Haizheng Zhuang(庄海正)2
1 School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, China;
2 Department of Physics, New Jersey Institute of Technology, Newark 07102-1982, USA
Abstract  Phonon anomalies have been reported in iron-pnictide superconductors indicating a diverse interplay between different orders in the materials. Here, we report Raman scattering measurements on Sr(Fe1-xCox)2As2 (x=0 and x=0.04) single crystals in the B2g symmetry with respect to a 1 Fe unit cell. Upon cooling, we observe a larger split (13 cm-1) of Eg Raman phonon modes pertaining to in-plane Fe and As displacements as the crystals undergo the tetragonal-to-orthorhombic structural phase transition, although a considerable split (9 cm-1) has been reported in Ba(Fe1-xCox)2As2. Furthermore, the splitting of Eg phonon modes is strongly reduced upon doping. We perform an order-parameter analysis revealing a similar doping dependence of Eg phonon splitting as reported in other compounds of the 122 family, indicating these phonon anomalies widely exist in 122 iron-based superconductors and might share the same mechanisms.
Keywords:  Raman scattering      superconductor      phonon      phase transition  
Received:  20 May 2021      Revised:  18 June 2021      Accepted manuscript online:  21 June 2021
PACS:  74.25.Gz (Optical properties)  
  74.25.Kc (Phonons)  
  78.30.-j (Infrared and Raman spectra)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
Corresponding Authors:  Yanxing Yang     E-mail:  yy397@njit.edu

Cite this article: 

Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正) Raman phonon anomalies in Sr(Fe1-xCox)2As2 2022 Chin. Phys. B 31 027401

[1] Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T and Hosono H 2006 J. Am. Chem. Soc. 128 10012
[2] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[3] Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M and Hosono H 2008 Nature 453 376
[4] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[5] Wang C, Li L J, Chi S, Zhu Z W, Ren Z, Li Y K, Wang Y T, Lin X, Luo Y K, Jiang S, Xu X F, Cao G H and Xu Z A 2008 Europhys. Lett. 83 67006
[6] Dai Y M, Xu B, Shen B, Xiao H, Lobo R. P. S. M and Qiu X G 2012 Chin. Phys. B 21 077403
[7] Chu C W, Chen F, Gooch M, Guloy A M, Lorenz B, Lv B, Sasmal K, Tang Z J, Tapp J H and Xue Y Y 2009 Physica C 469 326
[8] Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T and Takano Y 2008 Appl. Phys. Lett. 93 152505
[9] Mazin I I and Schmalian J 2009 Physica C 469 614
[10] Peng L, Cai C B and Liu Y S 2014 Chin. Phys. Lett. 31 027401
[11] Kang J H, Kim J W, Ryan P J, Xie L, Guo L, Sundahl C, Schad J, Campell N, Collantes Y G, Hellstrom E E, Rzchowski M S and Eom C B 2020 Proc. Natl. Acad. Sci. USA 117 21170
[12] Chauviére L, Gallais Y, Cazayous M, Sacuto A and Méasson M A 2009 Phys. Rev. B 80 094504
[13] Akrap A, Tu J J, Li L J, Cao G H, Xu Z A and Homes C C 2009 Phys. Rev. B 80 180502
[14] Xu B, Dai Y M, Han J, Wang K, Yang R, Yang Y X, Zhang W, Xiao H and Qiu X G 2014 Physica C 503 25
[15] Yang Y X, Gallais Y, Fang Z H, Shi J and Rui X 2015 Chin. Phys. B 24 027401
[16] Yildirim T 2008 Phys. Rev. Lett. 101 057010
[17] Gallais Y, Fernandes R M, Paul I, Chauviére L, Yang Y X, Méasson M A, Cazayous M, Sacuto A, Colson D and Forget A 2013 Phys. Rev. Lett. 111 267001
[18] Yang Y X, Gallais Y, Fernandes R M, Paul I, Chauviére L, Méasson M A, Cazayous M, Sacuto A, Colson D and Forget A 2014 JPS Conf. Proc. 3 015001
[19] Hu R, Bud'ko S L, Straszheim W E and Canfield P C 2011 Phys. Rev. B 83 094520
[20] Ni N, Tillman M E, Yan J Q, Kracher A, Hannahs S T, Bud'ko S L and Canfield 2008 Phys. Rev. B 78 214515
[21] Chu J H, Analytis J G, Kucharczyk C and Fisher I R 2009 Phys. Rev. B 79 014506
[22] Devereaux T P and Hackl R 2007 Rev. Mod. Phys 79 175
[23] Litvinchuk A P, Hadjiev V G, Iliev M N, Lv B, Guloy A M and Chu C W 2008 Phys. Rev. B 78 060503
[24] Martin R M 1970 Phys. Rev. B 1 4005
[25] Jesche A, Caroca-Canales N, Rosner H, Borrmann H, Ormeci A, Kasinathan D, Klauss H H, Luetkens H, Khasanov R, Amato A, Hoser A, Kaneko K, Krellner C and Geibel C 2008 Phys. Rev. B 78 180504
[26] Wilson S D, Yamani Z, Rotundu C R, Freelon B, Bourret-Courchesne E and Birgeneau R J 2009 Phys. Rev. B 79 184519
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[3] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[4] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[5] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[6] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[7] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[8] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[9] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[10] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[11] Effect of thickness on magnetic properties of single domain GdBCO bulk superconductors
Ping Gao(高平), Wan-Min Yang(杨万民), Ting-Ting Wu(武婷婷), Miao Wang(王妙), and Kun Liu(刘坤). Chin. Phys. B, 2023, 32(2): 027401.
[12] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[13] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[14] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[15] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
No Suggested Reading articles found!