CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Raman phonon anomalies in Sr(Fe1-xCox)2As2 |
Yanxing Yang(杨彦兴)1,2,†, Hewei Zhang(张鹤巍)2, and Haizheng Zhuang(庄海正)2 |
1 School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, China; 2 Department of Physics, New Jersey Institute of Technology, Newark 07102-1982, USA |
|
|
Abstract Phonon anomalies have been reported in iron-pnictide superconductors indicating a diverse interplay between different orders in the materials. Here, we report Raman scattering measurements on Sr(Fe1-xCox)2As2 (x=0 and x=0.04) single crystals in the B2g symmetry with respect to a 1 Fe unit cell. Upon cooling, we observe a larger split (13 cm-1) of Eg Raman phonon modes pertaining to in-plane Fe and As displacements as the crystals undergo the tetragonal-to-orthorhombic structural phase transition, although a considerable split (9 cm-1) has been reported in Ba(Fe1-xCox)2As2. Furthermore, the splitting of Eg phonon modes is strongly reduced upon doping. We perform an order-parameter analysis revealing a similar doping dependence of Eg phonon splitting as reported in other compounds of the 122 family, indicating these phonon anomalies widely exist in 122 iron-based superconductors and might share the same mechanisms.
|
Received: 20 May 2021
Revised: 18 June 2021
Accepted manuscript online: 21 June 2021
|
PACS:
|
74.25.Gz
|
(Optical properties)
|
|
74.25.Kc
|
(Phonons)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
74.62.Dh
|
(Effects of crystal defects, doping and substitution)
|
|
Corresponding Authors:
Yanxing Yang
E-mail: yy397@njit.edu
|
Cite this article:
Yanxing Yang(杨彦兴), Hewei Zhang(张鹤巍), and Haizheng Zhuang(庄海正) Raman phonon anomalies in Sr(Fe1-xCox)2As2 2022 Chin. Phys. B 31 027401
|
[1] Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T and Hosono H 2006 J. Am. Chem. Soc. 128 10012 [2] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 [3] Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M and Hosono H 2008 Nature 453 376 [4] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215 [5] Wang C, Li L J, Chi S, Zhu Z W, Ren Z, Li Y K, Wang Y T, Lin X, Luo Y K, Jiang S, Xu X F, Cao G H and Xu Z A 2008 Europhys. Lett. 83 67006 [6] Dai Y M, Xu B, Shen B, Xiao H, Lobo R. P. S. M and Qiu X G 2012 Chin. Phys. B 21 077403 [7] Chu C W, Chen F, Gooch M, Guloy A M, Lorenz B, Lv B, Sasmal K, Tang Z J, Tapp J H and Xue Y Y 2009 Physica C 469 326 [8] Mizuguchi Y, Tomioka F, Tsuda S, Yamaguchi T and Takano Y 2008 Appl. Phys. Lett. 93 152505 [9] Mazin I I and Schmalian J 2009 Physica C 469 614 [10] Peng L, Cai C B and Liu Y S 2014 Chin. Phys. Lett. 31 027401 [11] Kang J H, Kim J W, Ryan P J, Xie L, Guo L, Sundahl C, Schad J, Campell N, Collantes Y G, Hellstrom E E, Rzchowski M S and Eom C B 2020 Proc. Natl. Acad. Sci. USA 117 21170 [12] Chauviére L, Gallais Y, Cazayous M, Sacuto A and Méasson M A 2009 Phys. Rev. B 80 094504 [13] Akrap A, Tu J J, Li L J, Cao G H, Xu Z A and Homes C C 2009 Phys. Rev. B 80 180502 [14] Xu B, Dai Y M, Han J, Wang K, Yang R, Yang Y X, Zhang W, Xiao H and Qiu X G 2014 Physica C 503 25 [15] Yang Y X, Gallais Y, Fang Z H, Shi J and Rui X 2015 Chin. Phys. B 24 027401 [16] Yildirim T 2008 Phys. Rev. Lett. 101 057010 [17] Gallais Y, Fernandes R M, Paul I, Chauviére L, Yang Y X, Méasson M A, Cazayous M, Sacuto A, Colson D and Forget A 2013 Phys. Rev. Lett. 111 267001 [18] Yang Y X, Gallais Y, Fernandes R M, Paul I, Chauviére L, Méasson M A, Cazayous M, Sacuto A, Colson D and Forget A 2014 JPS Conf. Proc. 3 015001 [19] Hu R, Bud'ko S L, Straszheim W E and Canfield P C 2011 Phys. Rev. B 83 094520 [20] Ni N, Tillman M E, Yan J Q, Kracher A, Hannahs S T, Bud'ko S L and Canfield 2008 Phys. Rev. B 78 214515 [21] Chu J H, Analytis J G, Kucharczyk C and Fisher I R 2009 Phys. Rev. B 79 014506 [22] Devereaux T P and Hackl R 2007 Rev. Mod. Phys 79 175 [23] Litvinchuk A P, Hadjiev V G, Iliev M N, Lv B, Guloy A M and Chu C W 2008 Phys. Rev. B 78 060503 [24] Martin R M 1970 Phys. Rev. B 1 4005 [25] Jesche A, Caroca-Canales N, Rosner H, Borrmann H, Ormeci A, Kasinathan D, Klauss H H, Luetkens H, Khasanov R, Amato A, Hoser A, Kaneko K, Krellner C and Geibel C 2008 Phys. Rev. B 78 180504 [26] Wilson S D, Yamani Z, Rotundu C R, Freelon B, Bourret-Courchesne E and Birgeneau R J 2009 Phys. Rev. B 79 184519 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|