Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 125201    DOI: 10.1088/1674-1056/ac0693
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Fractal microstructure of Ag film via plasma discharge as SERS substrates

Xue-Fen Kan(阚雪芬)1, Cheng Yin(殷澄)1,†, Zhuang-Qi Cao(曹庄琪)2, Wei Su(苏巍)1, Ming-Lei Shan(单鸣雷)1, and Xian-Ping Wang(王贤平)3
1 Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022, China;
2 Department of Physics and Astronomy, Shanghai JiaoTong University, Shangha 200240, China;
3 Department of Physics, Key Laboratory of Optoelectronic and Telecommunication of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
Abstract  According to the atmospheric pressure plasma (APP) technology, we propose a rapid synthetic approach of the substrates for enhanced Raman spectroscopy. The plasma is used to modify and etch the surface of silver film, which generates large scale hotspots' aggregation. By switching the discharge polarity and adjusting the film thickness, different surface morphologies are formed due to the oxidation, reactive etch and accumulation of the plasma product in a certain space. Especially under positive corona discharge condition, dense snake-like microstructures are formed by the gradual connection of individual nanoparticles, which are driven by the influence of the electric field on surface diffusion. In addition, the experiments verify that the corresponding enhancement factor (EF) raises at least five orders of magnitude and the treatment time is about 10 min.
Keywords:  plasma discharge      fractal microstructure      surface-enhanced Raman scattering  
Received:  31 March 2021      Revised:  23 April 2021      Accepted manuscript online:  29 May 2021
PACS:  52.38.Bv (Rayleigh scattering; stimulated Brillouin and Raman scattering)  
  82.33.Xj (Plasma reactions (including flowing afterglow and electric discharges))  
  61.46.Bc (Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874140, 12064017, and 61765008), the Science and Technology Project of Changzhou, China (Grant Nos. CJ20210130, CJ20190046, and CJ20200073), and the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (Grant Nos. B200203143 and KYCX20 0433).
Corresponding Authors:  Cheng Yin     E-mail:  cyin.phys@gmail.com

Cite this article: 

Xue-Fen Kan(阚雪芬), Cheng Yin(殷澄), Zhuang-Qi Cao(曹庄琪), Wei Su(苏巍), Ming-Lei Shan(单鸣雷), and Xian-Ping Wang(王贤平) Fractal microstructure of Ag film via plasma discharge as SERS substrates 2021 Chin. Phys. B 30 125201

[1] Chen H, Tian F, Chi J M, Kanka J and Du H 2014 Opt. Lett. 39 5822
[2] Gaufrès E, Tang Y W, Lapointe F, Cabana J, Nadon M A, Cottenye N, Raymond F, Szkopek T and Martel R 2014 Nat. Photon. 8 72
[3] Islam M S, Sultana J, Ahmmed A R, Habib M S, Dinovitser A, Ng B and Abbott D 2019 Opt. Lett. 44 001134
[4] Sharma Y and Dhawan A 2016 Opt. Lett. 41 2085
[5] Valley N, Greeneltch N, Van Duyne R P and Schatz G C 2013 J. Phys. Chem. Lett. 4 2599
[6] Patra P P, Chikkaraddy R, Tripathi R P, Dasgupta A and Kumar P G 2014 Nat. Commun. 5 5357
[7] Chen C, Li Y, Kerman S, Neutens P, Willems K, Cornelissen S, Lagae L, Stakenborg T and Dorpe P V 2018 Nat. Commun. 9 1733
[8] Mcleod A, Vernon K C, Rider A E and Ostrikov K 2014 Opt. Lett. 39 2334
[9] Wu J, Xu Y, Xu P, Pan Z, Chen S, Shen Q, Zhan L, Zhang Y and Ni W 2015 Nanoscale 7 17529
[10] Huang Y, Chen Y, Xue X, Zhai Y, Wang L and Zhang Z 2018 Opt. Lett. 43 002332
[11] Langer J, Jimenez D and Aizpurua J 2019 ACS Nano 14 28
[12] Xin H, Fan C, Wang J, Liang E and Zhu S 2018 Opt. Rev. 25 678
[13] Yuan D, Chen S, Wu Y and Wang J 2019 Mod. Phys. Lett. B 33 1950239
[14] Tendero C, Tixier C, Tristant P, Desmaison J and Leprince P 2006 Spectrochmica Acta Part B 61 2
[15] Winter J, Brandenburg R and Weltman K 2015 Plasma Sources Sci. Technol. 24 064001
[16] Penkov O V, Khadem M, Lim W and Kim D 2015 J. Coat. Technol. Res. 12 225
[17] Chiang W H, Mariotti D, Sankaran R M, Eden J G and Ostrikov K 2020 Adv. Mater. 32 1905508
[18] Sun D, Tang M, Zhang L, Falzon B G, Padmanaban D B, Mariotti D, Maguire P, Xu H, Chen M and Sun D 2019 Nanotechnology 30 455603
[19] Sun D, Turner J, Jiang N, Zhu S, Zhang L, Falzon B G, McCoy C P, Maguire P, Mariotti D and Sun D 2020 Compos. Sci. Technol. 186 107911
[20] Liu D, Liu L, Ji L, Qi Z, Xia Y, Song Y, Dong D, Li Z, Liu R, Liu B, Sun D and Liu D 2019 Appl. Surf. Sci. 469 262
[21] Chen B, Zhu C, Fei J, Jiang Y, Yin C, Su W, He X, Li Y, Chen Q, Ren Q and Chen Y 2019 J. Hazard. Mater. 363 55
[22] Chiang W H, Cochey M, Virnelson R C and Sankarana R M 2007 Appl. Phys. Lett. 91 021501
[23] Doherty B, Brunetti B G, Sgamellotti A and Miliani C 2011 J. Raman Spectrosc. 42 1932
[24] Senapati S, Srivastava S K, Singh S B and Kulkarni A 2014 Environmental Research 135 95
[25] Hu C, Rong J, Cui J, Yang Y, Yang L, Wang Y and Liu Y 2013 Carbon 51 255
[26] Kim M C, Yang S H, Boo J H and Han J G 2003 Surf. Coat. Technol. 174-175 839
[1] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[2] Flow separation control over an airfoil using continuous alternating current plasma actuator
Jian-Guo Zheng(郑建国). Chin. Phys. B, 2021, 30(3): 034702.
[3] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[4] Highly sensitive and stable SERS probes of alternately deposited Ag and Au layers on 3D SiO2 nanogrids for detection of trace mercury ions
Yi Tian(田毅), Han-Fu Wang(王汉夫), Lan-Qin Yan(闫兰琴), Xian-Feng Zhang(张先锋), Attia Falak, Pei-Pei Chen(陈佩佩), Feng-Liang Dong(董凤良), Lian-Feng Sun(孙连峰), Wei-Guo Chu(禇卫国). Chin. Phys. B, 2018, 27(7): 077406.
[5] Quantitative and sensitive detection of prohibited fish drugs by surface-enhanced Raman scattering
Shi-Chao Lin(林世超), Xin Zhang(张鑫), Wei-Chen Zhao(赵伟臣), Zhao-Yang Chen(陈朝阳), Pan Du(杜攀), Yong-Mei Zhao(赵永梅), Zheng-Long Wu(吴正龙), Hai-Jun Xu(许海军). Chin. Phys. B, 2018, 27(2): 028707.
[6] A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates
Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里). Chin. Phys. B, 2018, 27(1): 017801.
[7] Controllable optical activity of non-spherical Ag and Co SERS substrate with different magnetic field
Chun-Zhen Fan(范春珍), Shuang-Mei Zhu(朱双美), Hao-Yi Xin(辛昊毅). Chin. Phys. B, 2017, 26(2): 023301.
[8] Low-frequency oscillations in Hall thrusters
Wei Li-Qiu (魏立秋), Han Liang (韩亮), Yu Da-Ren (于达仁), Guo Ning (郭宁). Chin. Phys. B, 2015, 24(5): 055201.
[9] An effective surface-enhanced Raman scattering template based on gold nanoparticle/silicon nanowire arrays
Wang Ming-Li (王明利), Zhang Chang-Xing (张常兴), Wu Zheng-Long (吴正龙), Jing Xi-Li (井西利), Xu Hai-Jun (许海军). Chin. Phys. B, 2014, 23(6): 067802.
[10] Enormous enhancement of electric field in active gold nanoshells
Jiang Shu-Min (蒋书敏), Wu Da-Jian (吴大建), Wu Xue-Wei (吴雪炜), Liu Xiao-Jun (刘晓峻). Chin. Phys. B, 2014, 23(4): 047807.
[11] Perforated nanocap array: Facile fabrication process and efficient surface enhanced Raman scattering with fluorescence suppression
Wang Jun (王军), Huang Li-Qing (黄丽清), Tong Hui-Min (童慧敏), Zhai Li-Peng (翟立鹏), Yuan Lin (袁林), Zhao Li-Hua (赵丽华), Zhang Wei-Wei (张薇薇), Shan Dong-Zhi (单冬至), Hao Ai-Wen (郝爱文), Feng Xue-Hong (冯雪红). Chin. Phys. B, 2013, 22(4): 047301.
No Suggested Reading articles found!