Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 127402    DOI: 10.1088/1674-1056/ac3651
Special Issue: SPECIAL TOPIC — Unconventional superconductivity
SPECIAL TOPIC—Unconventional superconductivity Prev   Next  

Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2

Tao Xie(谢涛)1,2,†§, Chang Liu(刘畅)1,2,†, Tom Fennell3, Uwe Stuhr3, Shi-Liang Li(李世亮)1,2,4, and Hui-Qian Luo(罗会仟)1,4,‡
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We report an inelastic neutron scattering investigation on the spin resonance mode in the optimally hole-doped iron-based superconductor Ba0.67K0.33Fe2As2 with Tc=38.2 K. Although the resonance is nearly two-dimensional with peak energy ER≈14 meV, it splits into two incommensurate peaks along the longitudinal direction ([H, 0, 0]) and shows an upward dispersion persisting to 26 meV. Such dispersion breaks through the limit of total superconducting gaps tot=|k|+|k+Q|(about 11-17 meV) on nested Fermi surfaces measured by high resolution angle resolved photoemission spectroscopy (ARPES). These results cannot be fully understood by the magnetic exciton scenario under s±-pairing symmetry of superconductivity, and suggest that the spin resonance may not be restricted by the superconducting gaps in the multi-band systems.
Keywords:  iron-based superconductor      neutron spin resonance      magnetic excitations  
Received:  22 September 2021      Revised:  01 November 2021      Accepted manuscript online:  04 November 2021
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  75.30.Gw (Magnetic anisotropy)  
  78.70.Nx (Neutron inelastic scattering)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0704200, 2018YFA0305602, 2017YFA0303100, and 2017YFA0302900), the National Natural Science Foundation of China (Grant Nos. 11822411 and 11961160699), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (CAS) (Grant Nos. XDB25000000 and XDB07020300), K.C.Wong Education Foundation (Grant No. GJTD-2020-01), the Youth Innovation Promotion Association of CAS (Grant No. Y202001), and the Beijing Natural Science Foundation, China (Grant No. JQ19002).
Corresponding Authors:  Hui-Qian Luo     E-mail:

Cite this article: 

Tao Xie(谢涛), Chang Liu(刘畅), Tom Fennell, Uwe Stuhr, Shi-Liang Li(李世亮), and Hui-Qian Luo(罗会仟) Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2 2021 Chin. Phys. B 30 127402

[1] Eschrig M 2006 Adv. Phys. 55 47
[2] Sidis Y, Pailhès S, Hinkov V, Fauqué B, Ulrich C, Capogna L, Ivanov A, Regnault L P, Keimer B and Bourges P 2007 C. R. Phys. 8 745
[3] Rossat-Mignod J, Regnault L P, Vettier C, Bourges P, Burlet P, Bossy J, Henry J Y and Lapertot G 1991 Physica C 185–189 86
[4] Mook H A, Yethiraj M, Aeppli G, Mason T E and Armstrong T 1993 Phys. Rev. Lett. 70 3490
[5] Sato N K, Aso N, Miyake K, Shiina R, Thalmeier P, Varelogiannis G, Geibel C, Steglich F, Fulde P and Komatsubara T 2001 Nature 410 340
[6] Stock C, Broholm C, Hudis J, Kang H J and Petrovic C 2008 Phys. Rev. Lett. 100 087001
[7] Christianson A D, Goremychkin E A, Osborn R, Rosenkranz S, Lumsden M D, Malliakas C D, Todorov I S, Claus H, Chung D Y, Kanatzidis M G, Bewley R I and Guidi T 2008 Nature 456 930
[8] Liu T J, Hu J, Qian B, Fobes D, Mao Z Q, Bao W, Reehuis M, Kimber S A J, Prokes K, Matas S, Argyriou D N, Hiess A, Rotaru A, Pham H, Spinu L, Qiu Y, Thampy V, Savici A T, Rodriguez J A and Broholm C 2010 Nat. Mater. 9 716
[9] Dai P 2015 Rev. Mod. Phys. 87 855
[10] Wang M, Luo H, Zhao J, Zhang C, Wang M, Marty K, Chi S, Lynn J W, Schneidewind A, Li S and Dai P 2010 Phys. Rev. B 81 174524
[11] Xie T, Gong D, Ghosh H, Ghosh A, Soda M, Masuda T, Itoh S, Bourdarot F, Regnault L P, Danilkin S, Li S and Luo H 2018 Phys. Rev. Lett. 120 137001
[12] Hong W, Song L, Liu B, Li Z, Zeng Z, Li Y, Wu D, Sui Q, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J, Zhao L, Zhou X, Qiu X, Li S and Luo H 2020 Phys. Rev. Lett. 125 117002
[13] Yu G, Li Y, Motoyama E M and Greven M 2009 Nat. Phys. 5 873
[14] Xie T, Wei Y, Gong D, Fennell T, Stuhr U, Kajimoto R, Ikeuchi K, Li S, Hu J and Luo H 2018 Phys. Rev. Lett. 120 267003
[15] Song Y, Van Dyke J, Lum I K, White B D, Jang S, Yazici D, Shu L, Schneidewind A, Čermák P, Qiu Y, Maple M B, Morr D K and Dai P 2016 Nat. Commun. 7 12774
[16] Richard P, Sato T, Nakayama K, Takahashi T and Ding H 2011 Rep. Prog. Phys. 74 124512
[17] Hirschfeld P J, Korshunov M M and Mazin I I 2011 Rep. Prog. Phys. 74 124508
[18] Maier T A and Scalapino D J 2008 Phys. Rev. B 78 020514(R)
[19] Maier T A, Graser S, Scalapino D J and Hirschfeld P 2009 Phys. Rev. B 79 134520
[20] Das T and Balatsky A V 2011 Phys. Rev. Lett. 106 157004
[21] Kim M G, Tucker G S, Pratt D K, Ran S, Thaler A, Christianson A D, Marty K, Calder S, Podlesnyak A, Bud’ko S L, Canfield P C, Kreyssig A, Goldman A I and McQueeney R J 2013 Phys. Rev. Lett. 110 177002
[22] Zhang C, Li H F, Song Y, Su Y, Tan G, Netherton T, Redding C, Carr S V, Sobolev O, Schneidewind A, Faulhaber E, Harriger L W, Li S, Lu X, Yao D X, Das T, Balatsky A V, Brückel Th, Lynn J W and Dai P 2013 Phys. Rev. B 88 064504
[23] Zhang R, Wang W, Maier T A, Wang M, Stone M B, Chi S, Winn B and Dai P 2018 Phys. Rev. B 98 060502(R)
[24] Luo H, Lu X, Zhang R, Wang M, Goremychkin E A, Adroja D T, Danilkin S, Deng G, Yamani Z and Dai P 2013 Phys. Rev. B. 88 144516
[25] Wang Q, Park J T, Feng Y, Shen Y, Hao Y, Pan B, Lynn J W, Ivanov A, Chi S, Matsuda M, Cao H, Birgeneau R J, Efremov D V and Zhao J 2016 Phys. Rev. Lett. 116 197004
[26] Surmach M A, Brückner F, Kamusella S, Sarkar R, Portnichenko P Y, Park J T, Ghambashidze G, Luetkens H, Biswas P K, Choi W J, Seo Y I, Kwon Y S, Klauss H H and Inosov D S 2015 Phys. Rev. B 91 104515
[27] Ma M, Wang L, Bourges P, Sidis Y, Danilkin S and Li Y 2017 Phys. Rev. B 95 100504
[28] Adroja D T, Blundell S J, Lang F, Luo H, Wang Z and Cao G 2020 J. Phys.: Condens. Matter 32 435603
[29] Kontani H and Onari S 2010 Phys. Rev. Lett. 104 157001
[30] Takeuchi L, Yamakawa Y and Kontani H 2018 Phys. Rev. B 98 165143
[31] Chi S, Schneidewind A, Zhao J, Harriger L W, Li L, Luo Y, Cao G, Xu Z, Loewenhaupt M, Hu J and Dai P 2009 Phys. Rev. Lett. 102 107006
[32] Wang M, Luo H, Zhao J, Zhang C, Wang M, Marty K, Chi S, Lynn J W, Schneidewind A, Li S and Dai P 2010 Phys. Rev. B 81 174524
[33] Park J T, Friemel G, Li Y, Kim J H, Tsurkan V, Deisenhofer J, Krug von Nidda H A, Loidl A, Ivanov A, Keimer B and Inosov D S 2011 Phys. Rev. Lett. 107 177005
[34] Zhao J, Rotundu C R, Marty K, Matsuda M, Zhao Y, Setty C, BourretCourchesne E, Hu J and Birgeneau R J 2013 Phys. Rev. Lett. 110 147003
[35] Lee C H, Steffens P, Qureshi N, Nakajima M, Kihou K, Iyo A, Eisaki H and Braden M 2013 Phys. Rev. Lett. 111 167002
[36] Zhang C, Yu R, Su Y, Song Y, Wang M, Tan G, Egami T, FernandezBaca J A, Faulhaber E, Si Q and Dai P 2013 Phys. Rev. Lett. 111 207002
[37] Waβer F, Park J T, Aswartham S, Wurmehl S, Sidis Y, Steffens P, Schmalzl K, Büchner B and Braden M 2019 npj Quantum Mater. 4 59
[38] Luo H, Wang Z, Yang H, Cheng P, Zu X and Wen H H 2008 Supercond. Sci. Technol. 21 125014
[39] Zhang C, Wang M, Luo H, Wang M, Liu M, Zhao J, Abernathy D L, Maier T A, Marty K, Lumsden M D, Chi S, Chang S, Rodriguez-Rivera J A, Lynn J W, Xiang T, Hu J and Dai P 2011 Sci. Rep. 1 115
[40] Ding H, Richard P, Nakayama K, Sugawara K, Arakane T, Sekiba Y, Takayama A, Souma S, Sato T, Takahashi T, Wang Z, Dai X, Fang Z, Chen G, Luo J and Wang N 2008 Europhys. Lett. 83 47001
[41] Nakayama K, Sato T, Richard P, Xu Y M, Sekiba Y, Souma S, Chen G, Luo J, Wang N, Ding H and Takahash T 2009 Europhys. Lett. 85 67002
[42] Xu Y M, Huang Y B, Cui X Y, Razzoli E, Radovic M, Shi M, Chen G F, Zheng P, Wang N L, Zhang C L, Dai P C, Hu J P, Wang Z and Ding H 2011 Nat. Phys. 7 198
[43] Zhang Y, Yang L X, Chen F, Zhou B, Wang X F, Chen X H, Arita M, Shimada K, Namatame H, Taniguchi M, Hu J P, Xie B P and Feng D L 2010 Phys. Rev. Lett. 105 117003
[44] Zhang Y, Ye Z R, Ge Q Q, Chen F, Jiang J, Xu M, Xie B P and Feng D L 2012 Nat. Phys. 8 371
[45] Ideta S, Murai N, Nakajima M, Kajimoto R and Tanaka K 2019 Phys. Rev. B 100 235135
[46] Cai Y, Huang J, Miao T, Wu D, Gao Q, Li C, Xu Y, Jia J, Wang Q, Huang Y, Liu G, Zhang F, Zhang S, Yang F, Wang Z, Peng Q, Xu Z, Zhao L and Zhou X J 2021 Science Bulletin 66 1839
[47] Stuhr U, Roessli B, Gvasaliya S, Rønnow H M, Filges U, Graf D, Bollhalder A, Hohl D, Bürge R, Schild M, Holitzner L, Kaegi C, Keller P and Mühlebach T 2017 Nucl. Instrum. Methods Phys. Res., Sect. A 853 16
[48] Harriger L W, Luo H, Liu M, Frost C, Hu J, Norman M R and Dai P 2011 Phys. Rev. B 84 054544
[49] Wang M, Zhang C, Lu X, Tan G, Luo H, Song Y, Wang M, Zhang X, Goremychkin E A, Perring T G, Maier T A, Yin Z, Haule K, Kotliar G and Dai P 2013 Nat. Commun. 4 2874
[50] Xie T, Liu C, Bourdarot F, Regnault L P, Li S and Luo H 2020 Phys. Rev. Research 2 022018(R)
[51] Qiu Y, Bao W, Zhao Y, Broholm C, Stanev V, Tesanovic Z, Gasparovic Y C, Chang S, Hu J, Qian B, Fang M and Mao Z 2009 Phys. Rev. Lett. 103 067008
[52] Inosov D S, Park J T, Bourges P, Sun D L, Sidis Y, Schneidewind A, Hradil K, Haug D, Lin C T, Keimer B and Hinkov V 2010 Nat. Phys. 6 178
[53] Korshunov M M and Eremin I 2008 Phys. Rev. B 78 140509
[54] Onari S, Kontani H and Sato M 2010 Phys. Rev. B 81 060504
[55] Onari S and Kontani H 2011 Phys. Rev. B 84 144518
[1] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[2] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[3] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[4] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[5] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[6] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[7] Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe
Jinhua Wang(王晋花), Qing Li(李庆), Wei Xie(谢威), Guanyu Chen(陈冠宇), Xiyu Zhu(祝熙宇), and Hai-Hu Wen(闻海虎). Chin. Phys. B, 2021, 30(10): 107402.
[8] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[9] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[10] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[11] Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor
Cong Li(李聪), Guangyang Dai(代光阳), Yongqing Cai(蔡永青), Yang Wang(王阳), Xiancheng Wang(望贤成), Qiang Gao(高强), Guodong Liu(刘国东), Yuan Huang(黄元), Qingyan Wang(王庆艳), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Changqing Jin(靳常青), Lin Zhao(赵林)†, and X J Zhou(周兴江)‡. Chin. Phys. B, 2020, 29(10): 107402.
[12] Nonlinear uniaxial pressure dependence of the resistivity in Sr1-xBaxFe1.97Ni0.03As2
Hui-Can Mao(毛慧灿), Dong-Liang Gong(龚冬良), Xiao-Yan Ma(马肖燕), Hui-Qian Luo(罗会仟), Yi-Feng Yang(杨义峰), Lei Shan(单磊), Shi-Liang Li(李世亮). Chin. Phys. B, 2018, 27(8): 087402.
[13] Electronic structure and nematic phase transition in superconducting multiple-layer FeSe films grown by pulsed laser deposition method
Bing Shen(沈兵), Zhong-Pei Feng(冯中沛), Jian-Wei Huang(黄建伟), Yong Hu(胡勇), Qiang Gao(高强), Cong Li(李聪), Yu Xu(徐煜), Guo-Dong Liu(刘国东), Li Yu(俞理), Lin Zhao(赵林), Kui Jin(金魁), X J Zhou(周兴江). Chin. Phys. B, 2017, 26(7): 077402.
[14] Transition from tunneling regime to local point contact realized on Ba0.6K0.4Fe2As2 surface
Xingyuan Hou(侯兴元), Yunyin Jie(揭云印), Jing Gong(巩靖), Bing Shen(沈冰), Hai Zi(子海), Chunhong Li(李春红), Cong Ren(任聪), Lei Shan(单磊). Chin. Phys. B, 2017, 26(6): 067402.
[15] Comparison of band structure and superconductivity in FeSe0.5Te0.5 and FeS
Yang Yang(杨阳), Shi-Quan Feng(冯世全), Yuan-Yuan Xiang(向圆圆), Hong-Yan Lu(路洪艳), Wan-Sheng Wang(王万胜). Chin. Phys. B, 2017, 26(12): 127401.
No Suggested Reading articles found!