Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract Superconductivity with transition temperature Tc above 40 K was observed in protonated FeSe (Hy-FeSe) previously with the ionic liquid EMIM-BF4 used in the electrochemical process. However, the real superconducting phase is not clear until now. And detailed structural, magnetization, and electrical transport measurements are lacking. By using similar protonating technique on FeSe single crystals, we obtain superconducting samples with Tc above 40 K. We show that the obtained superconducting phase is not Hy-FeSe but actually an organic-ion (C6H11N2+ referred to as EMIM+)-intercalated phase (EMIM)xFeSe. By using x-ray diffraction technique, two sets of index peaks corresponding to different c-axis lattice constants are detected in the obtained samples, which belong to the newly formed phase of intercalated (EMIM)xFeSe and the residual FeSe, respectively. The superconductivity of (EMIM)xFeSe with Tc of 44.4 K is confirmed by resistivity and magnetic susceptibility measurements. Temperature dependence of resistivity with different applied magnetic fields reveals that the upper critical field Hc2 is quite high, while the irreversibility field Hirr is suppressed quickly with increasing temperature till about 20 K. This indicates that the resultant compound has a high anisotropy with a large spacing between the FeSe layers.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12061131001 and 52072170) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000).
Jinhua Wang(王晋花), Qing Li(李庆), Wei Xie(谢威), Guanyu Chen(陈冠宇), Xiyu Zhu(祝熙宇), and Hai-Hu Wen(闻海虎) Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe 2021 Chin. Phys. B 30 107402
[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc.130 3296 [2] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA105 14262 [3] Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C 2009 Nat. Mater.8 630 [4] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun.7 12146 [5] Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M and Chen X L 2010 Phys. Rev. B82 180520 [6] Krzton-Maziopa A, Shermadini Z, Pomjakushina E, Pomjakushin V, Bendele M, Amato A, Khasanov R, Luetkens H and Conder K 2011 J. Phys.: Condens. Matter23 052203 [7] Ying J J, Wang X F, Luo X G, Wang A F, Zhang M, Yan Y J, Xiang Z J, Liu R H, Cheng P, Ye G J and Chen X H 2011 Phys. Rev. B83 212502 [8] Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J and Chen X H 2011 Phys. Rev. B83 060512 [9] Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J and Yuan H Q 2011 EPL94 27009 [10] Ye F, Chi S, Bao W, Wang X F, Ying J J, Chen X H, Wang H D, Dong C H and Fang M H 2011 Phys. Rev. Lett.107 137003 [11] Wang Z, Song Y J, Shi H L, Wang Z W, Chen Z, Tian H F, Chen G F, Guo J G, Yang H X and Li J Q 2011 Phys. Rev. B83 140505 [12] Ding X X, Fang D L, Wang Z Y, Yang H, Liu J Z, Deng Q, Ma G B, Meng C, Hu Y H and Wen H H 2013 Nat. Commun.4 1897 [13] Li W, Ding H, Deng P, Chang K, Song C L, He K, Wang L L, Ma X C, Hu J P, Chen X and Xue Q K 2012 Nat. Phys.8 126 [14] Ying T P, Chen X L, Wang G, Jin S F, Zhou T T, Lai X F, Zhang H and Wang W Y 2012 Sci. Rep.2 426 [15] Scheidt E W, Hathwar V R, Schmitz D, Dunbar A, Scherer W, Mayr F, Tsurkan V, Deisenhofer J and Loidl A 2012 Eur. Phys. J. B85 279 [16] Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J and Clarke S J 2013 Nat. Mater.12 15 [17] Ying T P, Chen X L, Wang G, Jin S F, Lai X F, Zhou T T, Zhang H, Shen S J and Wang W Y 2013 J. Am. Chem. Soc.135 2951 [18] Lu X F, Wang N Z, Zhang G H, Luo X G, Ma Z M, Lei B, Huang F Q and Chen X H 2014 Phys. Rev. B89 020507 [19] Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater.14 325 [20] Dong X L, Jin K, Yuan D N, Zhou H X, Yuan J, Huang Y L, Hua W, Sun J L, Zheng P, Hu W, Mao Y Y, Ma M W, Zhang G M, Zhou F and Zhao Z X 2015 Phys. Rev. B92 064515 [21] Krzton-Maziopa A, Pomjakushina E V, Pomjakushin V Y, Rohr F V, Schilling A and Conder K 2012 J. Phys. Condens. Matter24 382202 [22] Hosono S, Noji T, Hatakeda T, Kawamata T, Kato M and Koike Y 2014 J. Phys. Soc. Jpn.83 113704 [23] Noji T, Hatakeda T, Hosono S, Kawamata T, Kato M and Koike Y 2014 Physica C504 8 [24] Hayashi F, Lei H, Guo J G and Hosono H 2015 Inorg. Chem.54 3346 [25] Hatakeda T, Noji T, Sato K, Kawamata T, Kato M and Koike Y 2016 J. Phys. Soc. Jpn.85 103702 [26] Miao X, Terao T, Yang X F, Nishiyama S, Miyazaki T, Goto H, Iwasa Y and Kubozono Y 2017 Phys. Rev. B96 014502 [27] Jin S F, Fan X, Wu X Z, Sun R J, Wu H, Huang Q Z, Shi C L, Xi X K, Li Z L and Chen X L 2017 Chem. Comm.53 9729 [28] Sakamoto C, Noji T, Sato K, Kawamata T and Kato M 2020 J. Phys. Soc. Jpn.89 115002 [29] Gao Z, Zeng S Y, Zhu B C, Li B, Hao Q Y, Hu Y W, Wang D K and Tang K B 2018 Sci. China Mater.61 977 [30] Shi M Z, Wang N Z, Lei B, Shang C, Meng F B, Ma L K, Zhang F X, Kuang D Z and Chen X H 2018 Phys. Rev. Mater.2 074801 [31] Shi M Z, Wang N Z, Lei B, Ying J J, Zhu C S, Sun Z L, Cui J H, Meng F B, Shang C, Ma L K ang Chen X H 2018 New J. Phys.20 123007 [32] Cui Y, Hu Z, Zhang J S, Ma W L, Ma M W, Ma Z, Wang C, Yan J Q, Sun J P, Cheng J G, Jia S, Li Y, Wen J S, Lei H C, Yu P, Ji W and Yu W Q 2019 Chin. Phys. Lett.36 077401 [33] Böhmer A E, Hardy F, Eilers F, Ernst D, Adelmann P, Schweiss P, Wolf T and Meingast C 2013 Phys. Rev. B87 180505 [34] Chen G Y, Wang E Y, Zhu X Y and Wen H H 2019 Phys. Rev. B99 054517 [35] Lin H, Xing J, Zhu X Y, Yang H and Wen H H 2016 Sci. China-Phys. Mech. Astron.59 657404 [36] Werthamer R, Helfand E and Hohenberg P C 1966 Phys. Rev.147 295 [37] Yang H, Chen G Y, Zhu X Y, Xing J and Wen H H 2017 Phys. Rev. B96 064501 [38] Houghton A, Pelcovits R A and Sudbo A 1989 Phys. Rev. B40 6763 [39] Lindermann F 1910 Phys. Z11 609 [40] Wang C L, Yi X L, Qiu Y, Tang Q B, Zhang X W, Luo Y S and Yu B H 2016 Supercond. Sci. Technol.29 055003
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.