Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖)1, Bin Lei(雷彬)1, Xigang Luo(罗习刚)1,2, Jianjun Ying(应剑俊)1,3, Zhenyu Wang(王震宇)1,3, Tao Wu(吴涛)1,2,3,5,†, and Xianhui Chen(陈仙辉)1,2,3,4,5
1 CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China; 2 Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; 3 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China; 4 CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei 230026, China; 5 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract The driving mechanism of nematicity and its twist with superconductivity in iron-based superconductors are still under debate. Recently, a dominant B1g-type strain effect on superconductivity is observed in underdoped iron-pnictides superconductors Ba(Fe1-xCox)2As2, suggesting a strong interplay between nematicity and superconductivity. Since the long-range spin order is absent in FeSe superconductor, whether a similar strain effect could be also observed or not is an interesting question. Here, by utilizing a flexible film as substrate, we successfully achieve a wide-range-strain tuning of FeSe thin flake, in which both the tensile and compressive strain could reach up to ~0.7%, and systematically study the strain effect on both superconducting and nematic transition (Tc and Ts) in the FeSe thin flake. Our results reveal a predominant A1g-type strain effect on Tc. Meanwhile, Ts exhibits a monotonic anti-correlation with Tc and the maximum Tc reaches to 12 K when Ts is strongly suppressed under the maximum compressive strain. Finally, in comparison with the results in the underdoped Ba(Fe1-xCox)2As2, the absence of B1g-type strain effect in FeSe further supports the role of stripe-type spin fluctuations on superconductivity. In addition, our work also supports that the orbital degree of freedom plays a key role to drive the nematic transition in FeSe.
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0303000 and 2016YFA0300201), the National Natural Science Foundation of China (Grant No. 11888101), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000), and the Anhui Initiative in Quantum Information Technologies (Grant No. AHY160000).
Corresponding Authors:
Tao Wu
E-mail: wutao@ustc.edu.cn
Cite this article:
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉) Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake 2021 Chin. Phys. B 30 097403
[1] Fernandes R M and Schmalian J 2012 Supercond. Sci. Technol.25 084005 [2] Bohmer A E and Kreisel A 2018 J. Phys.: Condens. Matter30 023001 [3] Chu J H, Analytis J G, Greve K D, McMahon P L, Islam Z, Yamamoto Y and Fisher I R 2010 Science329 824 [4] Tanatar M A, Blomberg E C, Kreyssig A, Kim M G, Ni N, Thaler A, Budko S L, Canfield P C, Goldman A I, Mazin I I and Prozorov R 2010 Phys. Rev. B81 184508 [5] Fisher I R, Degiorgi L and Shen Z X 2011 Rep. Prog. Phys.74 124506 [6] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys.10 97 [7] Chubukov A V, Khodas M, and Fernandes R M 2016 Phys. Rev. X6 041045 [8] Kim H, Tanatar M A, Straszheim W E, Cho K, Murphy J, Spyrison N, Reid J P, Shen B, Wen H H, Fernandes R M and Prozorov R 2014 Phys. Rev. B90 014517 [9] Nandi S, Kim M G, Kreyssig A, Fernandes R M, Pratt D K, Thaler A, Ni N, Bud'ko S L, Canfield P C, Schmalian J, McQueeney R J and Goldman A I 2010 Phys. Rev. Lett.104 057006 [10] Fang C, Yao H, Tsai W F, Hu J and Kivelson S A 2008 Phys. Rev. B77 224509 [11] Xu C, Müller M and Sachdev S 2008 Phys. Rev. B78 020501(R) [12] Fernandes R M, VanBebber L H, Bhattacharaya S, Chandra P, Keppens P, Mandrus D, McGuire M A, Sales B C, Sefat A S and Schmalian J 2010 Phys. Rev. Lett.105 157003 [13] Song Y, Lu X Y, Abernathy D L, Tam D W, Niedziela J L, Tian W, Luo H Q, Si Q M and Dai P C 2015 Phys. Rev. B92 180504 [14] Yi M, Lu D H, Chu J H, Analytis J G, Sorini A P, Kemper A F, Moritz B, Moore R G, Hashimoto M, Lee W S, Hussain Z, Devereaux T P, Fisher I R and Shen Z X 2011 Proc. Natl. Acad. Sci. USA108 6878 [15] Lu X Y, Park J T, Zhang R, Luo H Q, Nevidomskyy A H, Si Q M and Dai P C 2014 Science345 657 [16] Zhang W L, Park J T, Lu X Y, Wei Y, Ma X Y, Hao L J, Dai P C, Meng Z Y, Yang Y F, Luo H Q and Li S L 2016 Phys. Rev. Lett.117 227003 [17] Nabeshima F, Ishikawa T, Oyanagi K I, Kawai M and Maeda A 2018 J. Phys. Soc. Jpn.87 073704 [18] Licciardello S, Buhot J, Lu J, Ayres J, Kasahara S, Matsuda Y, Shibauchi T and Hussey N E 2019 Nature567 213 [19] Baek S H, Efremov D V, Ok J M, Kim J S, Brink J and Büchner B 2015 Nat. Mater.14 210 [20] Fanfarillo L, Mansart J, Toulemonde P, Cercellier H, Le Févre P, Bertran F, Valenzuela B, Benfatto L and Brouet V 2016 Phys. Rev. B94 155138 [21] Saito T, Onari S and Kontani H 2011 Phys. Rev. B83 140512 [22] Kreisel A, Hirschfeld P J and Andersen B M 2020 Symmetry12 1402 [23] Benfatto L, Valenzuela B and Fanfarillo L 2018 Npj Quantum Mater.3 56 [24] Chu J H, Kuo H H, Analytis J G and Fisher I R 2012 Science337 710 [25] Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Kasahara S, Matsuda Y and Shibauchi T 2016 Proc. Natl. Acad. Sci. USA113 8139 [26] Nabeshima F, Imai Y, Hanawa M, Tsukada I and Maeda A 2013 Appl. Phys. Lett.103 172602 [27] Feng Z P, Yuan J, He G, Hu W, Lin Z F, Li D, Jiang X Y, Huang Y L, Ni S L, Li J, Zhu B Y, Dong X L, Zhou F, Wang H B, Zhao Z X and Jin K 2018 Sci. Rep.8 4039 [28] Malinowski P, Jiang Q N, Sanchez J J, Mutch J, Liu Z Y, Went P, Liu J, Ryan P J, Kin J W, and Chu J H 2020 Nat. Phys.16 1189 [29] Worasaran T, Ikeda M S, Palmstrom J C, Straquadine J A W, Kivelson S A and Fisher I R 2021 Science372 973 [30] Feng Z P, Yuan J, Li J, Wu X X, Hu W, Shen B, Qin M Y, Zhao L, Zhu B Y, Stanev V, Liu M, Zhang G M, Yang H X, Li J Q, Dong X L, Zhou F, Zhou X J, Kusmartsev F V, Hu J P, Takeuchi I, Zhao Z X and Jin K 2019 arXiv:1807.01273 [31] Tanatar M A, Böhmer A E, Timmons E I, Schütt M, Drachuck G, Taufour V, Kothapalli K, Kreyssig A, Bud'ko S L, Canfield P C, Fernandes R M and Prozorov R 2016 Phys. Rev. Lett.117 127001 [32] Hosoi S, Matsuura K, Ishida K, Wang H, Mizukami Y, Watashige T, Kasahara S, Matsuda Y and Shibauchi T 2016 Proc. Natl. Acad. Sci. USA113 8139 [33] Conley H J, Wang B, Ziegler J I, Haglund R F, Pantelides J S and Bolotin K I 2013 Nano Lett.13 3626 [34] Zhang Z C, Li L K, Horng J, Wang N Z, Yang F Y, Yu Y J, Zhang Y, Chen G R, Watanabe K, Taniguchi T, Chen X H, Wang F and Zhang Y B 2017 Nano Lett.17 6097 [35] Bartlett J M, Steppke A, Hosoi S, Noad H, Park J, Timm C, Shibauchi T, Mackenzie A P and Hicks C W 2021 Phys. Rev. X11 021038 [36] Ghini M, Bristow M, Prentice J C A, Sutherland S, Sanna S, Haghighirad A A and Coldea A I 2021 Phys. Rev. B103 205139 [37] Nakajima M, Ohata Y and Tajima S 2021 Phys. Rev. Mat.5 044801 [38] Kinoshita K, Moriya R, Onodera M, Wakafuji Y, Masubuchi S, Watanabe K, Taniguchi T and Machida T 2019 Npj 2D Mater. Appl.3 22 [39] Roldán R, Castellanos-Gomez A, Cappelluti E and Guinea F 2015 J. Phys. Condens. Matter27 313201 [40] Lei B, Wang N Z, Shang C, Meng F B, Ma L K, Luo X G, Wu T, Sun Z, Jiang Z, Mao B H, Liu Z, Yu Y J, Zhang Y B and Chen X H 2017 Phys. Rev. B.95 020503 [41] Xia T L, Hou D, Zhao S C, Zhang A M, Chen G F, Luo J L, Wang N L, Wei J H, Lu Z Y and Zhang Q M 2009 Phys. Rev. B79 140510 [42] Gnezdilov V, Pashkevich Y G, Lemmens P, Wulferding D, Shevtsova T, Gusev A, Chareev D and Vasiliev A 2013 Phys. Rev. B87 144508 [43] Zhang A M, Ma X L, Wang Y M, Sun S S, Lei B, Lei H C, Chen X H, Wang X Q, Chen C F and Zhang Q M 2019 Phys. Rev. B100 060504(R) [44] Zhang Y, Yi M, Liu Z K, Li W, Lee J J, Moore R G, Hashimoto M, Nakajima M, Eisaki H, Mo S K, Hussain Z, Devereaux T P, Shen Z X and Lu D H 2016 Phys. Rev. B94 115153 [45] Kissikov T, Sarkar R, Lawson M, Bush B T, Timmons E I, Tanatar M A, Prozorov R, Bud'ko S L, Canfield P C, Fernandes R M and Curro N J 2018 Nat. Commun.9 1058 [46] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun.7 12146 [47] Fernandes R M and Chubukov A V 2017 Rep. Prog. Phys.80 014503 [48] Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A and Khasanov R 2010 Phys. Rev. Lett.104 087003 [49] Phan G N, Nakayama K, Sugawara K, Sato T, Urata T, Tanabe Y, Tanigaki K, Nabeshima F, Imai Y, Maeda A and Takahashi T 2017 Phys. Rev. B95 224507
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.