Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 018503    DOI: 10.1088/1674-1056/24/1/018503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Excellent acetone sensing properties of porous ZnO

Liu Chang-Bai (刘唱白), Liu Xing-Yi (刘星熠), Wang Sheng-Lei (王圣蕾)
College of Electronic Science & Engineering, Jilin University, Changchun 130012, China
Abstract  Porous ZnO was obtained by hydrothermal method. The results of scanning electron microscope revealed the porous structure in the as-prepared materials. The acetone sensing test results of porous ZnO show that porous ZnO possesses excellent acetone gas sensing properties. The response is 35.5 at the optimum operating temperature of 320 ℃ to 100 ppm acetone. The response and recovery times to 50 ppm acetone are 2 s and 8 s, respectively. The lowest detecting limit to acetone is 0.25 ppm, and the response value is 3.8. Moreover, the sensors also exhibit excellent selectivity and long-time stability to acetone.
Keywords:  porous ZnO      acetone      gas sensor  
Received:  18 April 2014      Revised:  07 September 2014      Accepted manuscript online: 
PACS:  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
  85.35.-p (Nanoelectronic devices)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Projected supported by the Project of Challenge Cup for College Students, China (Grant No. 450060497053).
Corresponding Authors:  Liu Chang-Bai     E-mail:  liwei99@jlu.edu.cn

Cite this article: 

Liu Chang-Bai (刘唱白), Liu Xing-Yi (刘星熠), Wang Sheng-Lei (王圣蕾) Excellent acetone sensing properties of porous ZnO 2015 Chin. Phys. B 24 018503

[1] Ajili M, Jebbari N, Kamoun T N and Castagné M 2012 EPJ Web of Conferences 29 00002
[2] Wu X, Siu G, Fu C and Ong H 2001 Appl. Phys. Lett. 78 2285
[3] Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Norris D J and Aydil E S 2007 Nano Lett. 7 1793
[4] Fukumura T, Jin Z, Kawasaki M, Shono T, Hasegawa T, Koshihara S and Koinuma H 2001 Appl. Phys. Lett. 78 958
[5] Forleo A, Francioso L, Capone S, Siciliano P, Lommens P and Hens Z 2010 Sens. Actuat. B Chem. 146 111
[6] Jia Z N, Zhang X D, Liu Y, Wang Y F, Fan J, Liu C C and Zhao Y 2014 Chin. Phys. B 23 046106
[7] Wang X 2012 Chin. Sci. Bull. 57 4653
[8] Lee Y M, Huang C M, Chen H W and Yang H W 2013 Sens. Actuat. A Phys. 189 307
[9] Wei A, Wang Z, Pan L H, Li W W, Xiong L, Dong X C and Huang W 2011 Chin. Phys. Lett. 28 080702
[10] Yu H L, Li L, Gao X M, Zhang Y, Meng F, Wang T S, Xiao G, Chen Y J and Zhu C L 2012 Sens. Actuat. B Chem. 171-172 679
[11] Liu Y, Gao C, Pan X, An X, Xie Y, Zhou M, Song J, Zhang H, Liu Z, Zhao Q, Zhang Y and Xie E 2011 Appl. Surf. Sci. 257 2264
[12] Navale S C, Gosavi S W and Mulla I S 2008 Talanta 75 1315
[13] Wang L L, Dou H, Li F, Deng J, Lou Z and Zhang T 2013 Sens. Actuat. B Chem. 183 467
[14] Wang Z J, Li Z Y, Liu L, Xu X R, Zhang H N, Wang W, Zheng W and Wang C 2010 J. Am. Ceram. Soc. 93 634
[15] Liu L, Guo C, Li S, Wang L, Dong Q and Li W 2010 Sens. Actuat. B Chem. 150 806
[16] Li X B, Zhang Q Q, Ma S Y, Wan G X, Li F M and Xu X L 2014 Sens. Actuat. B Chem. 195 526
[17] Cao J, Dou H, Zhang H M, Mei H X, Liu S, Fei T, Wang R, Wang L J and Zhang T 2014 Sens. Actuat. B Chem. 198 180
[18] Sun X H, Ji H M, Li X L, Cai S and Zheng C M 2014 J. Alloy. Compd. 600 111
[19] Singh M P, Singh H, Singh O, Kohli N and Singh R C 2012 Indian J. Phys. 86 237
[20] Cheng X L, Xu Y M, Gao S, Zhao H and Huo L H 2011 Sens. Actuat. B Chem. 155 716
[21] Yu X, Song F, Zhai B, Zheng C T and Wang Y D 2013 Physica E 52 92
[22] Qi Q, Zhang T, Liu L, Zheng X and Lu G 2009 Sens. Actuat. B Chem. 141 174
[23] Liu L, Zhang Y, Wang G, Li S, Wang L, Han Y, Jiang X and Wei A 2011 Sens. Actuat. B Chem. 160 448
[24] Egashira M, Shimizu Y and Takao Y 1990 Sens. Actuat. B Chem. 1 108
[25] Xu J, Pan Q, Shun Y and Tian Z 2000 Sens. Actuat. B Chem. 66 277
[26] Barsan N, Koziej D and Weimar U 2007 Sens. Actuat. B Chem. 121 18
[1] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[2] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
[3] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[4] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[5] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[6] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[7] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[8] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[9] Acetone sensors for non-invasive diagnosis of diabetes based on metal-oxide-semiconductor materials
Yujie Li(李育洁), Min Zhang(张敏), Haiming Zhang(张海明). Chin. Phys. B, 2020, 29(9): 090702.
[10] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[11] Room temperature NO2-sensing properties of hexagonal tungsten oxide nanorods
Yaqiao Wu(武雅乔), Ming Hu(胡明), Yuming Tian(田玉明). Chin. Phys. B, 2017, 26(2): 020701.
[12] Controllable synthesis of ultrathin vanadium oxide nanobelts via an EDTA-mediated hydrothermal process
Yu-Xiang Qin(秦玉香), Cheng Liu(刘成), Wei-Wei Xie(谢威威), Meng-Yang Cui(崔梦阳). Chin. Phys. B, 2016, 25(2): 027307.
[13] Morphology-controlled preparation of tungsten oxide nanostructures for gas-sensing application
Qin Yu-Xiang (秦玉香), Liu Chang-Yu (刘长雨), Liu Yang (柳杨). Chin. Phys. B, 2015, 24(2): 027304.
[14] Chemical synthesis of zinc oxide nanorods for enhanced hydrogen gas sensing
Musarrat Jabeen, Muhammad Azhar Iqbal, R Vasant Kumar, Mansoor Ahmed, Muhammad Tayyeb Javed. Chin. Phys. B, 2014, 23(1): 018504.
[15] Effects of rapid thermal annealing on room temperature NO2-sensing properties of WO3 thin film under LED radiation
Hu Ming (胡明), Jia Ding-Li (贾丁立), Liu Qing-Lin (刘青林), Li Ming-Da (李明达), Sun Peng (孙鹏). Chin. Phys. B, 2013, 22(6): 068204.
No Suggested Reading articles found!