Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 027304    DOI: 10.1088/1674-1056/24/2/027304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Morphology-controlled preparation of tungsten oxide nanostructures for gas-sensing application

Qin Yu-Xiang (秦玉香), Liu Chang-Yu (刘长雨), Liu Yang (柳杨)
School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, China
Abstract  A novel three-dimensional (3D) hierarchical structure and a roughly oriented one-dimensional (1D) nanowire of WO3 are selectively prepared on an alumina substrate by an induced hydrothermal growth method. Each hierarchical structure is constructed hydrothermally through bilateral inductive growth of WO3 nanowire arrays from a nanosheet preformed on the substrate. Only roughly oriented 1D WO3 nanowire can be obtained from a spherical induction layer. The analyses show that as-prepared 1D nanowire and 3D hierarchical structures exhibit monoclinic and hexagonal phases of WO3, respectively. The gas-sensing properties of the nanowires and the hierarchical structure of WO3, which include the variations of their resistances and response times when exposed to NO2, are investigated at temperatures ranging from room temperature (20 ℃) to 250 ℃ over 0.015 ppm-5 ppm NO2. The hierarchical WO3 behaves as a p-type semiconductor at room temperature, and shows p-to-n response characteristic reversal with the increase of temperature. Meanwhile, unlike the 1D nanowire, the hierarchical WO3 exhibits an excellent response characteristic and very good reversibility and selectivity to NO2 gas at room temperature due to its unique microstructure. Especially, it is found that the hierarchical WO3-based sensor is capable of detecting NO2 at a ppb level with ultrashort response time shorter than 5 s, indicating the potential of this material in developing a highly sensitive gas sensor with a low power consumption.
Keywords:  tungsten oxide      gas sensor      hierarchical structure      hydrothermal synthesis  
Received:  16 June 2014      Revised:  11 September 2014      Accepted manuscript online: 
PACS:  73.61.Cw (Elemental semiconductors)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  81.07.Bc (Nanocrystalline materials)  
  91.67.Jk (Geochemistry of hydrothermal systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274074 and 61271070) and the Natural Science Foundation of Tianjin, China (Grant No. 11JCZDJC15300).
Corresponding Authors:  Qin Yu-Xiang     E-mail:  qinyuxiang@tju.edu.cn

Cite this article: 

Qin Yu-Xiang (秦玉香), Liu Chang-Yu (刘长雨), Liu Yang (柳杨) Morphology-controlled preparation of tungsten oxide nanostructures for gas-sensing application 2015 Chin. Phys. B 24 027304

[1] Lee D S, Nam K H and Lee D D 2000 Thin Solid Films 375 142
[2] Hieu N V, Quang V V, Hoa N D and Kim D 2011 Curr. Appl. Phys. 11 657
[3] Qin Y X, Liu K X and Liu C Y 2013 Acta Phys. Sin. 62 208104 (in Chinese)
[4] Datta N, Ramgir N, Kaur M, Roy M, Bhatt R, Kailasaganapathi S, Debnath A K, Aswal D K and Gupta S K 2012 Mater. Chem. Phys. 134 851
[5] Shen Y B, Yamazaki T, Liu Z F, Meng D, Kikuta T and Nakatani N 2009 Thin Solid Films 517 2069
[6] Ponzoni A, Comini E, Sberveglieri G, Zhou J, Deng S Z, Xu N S, Ding Y and Wang Z L 2006 Appl. Phys. Lett. 88 203101
[7] Huang R, Zhu J and Yu R 2009 Chin. Phys. B 18 3024
[8] Yuan H J, Chen Y Q, Yu F, Peng Y H, He X W, Zhao D and Tang D S 2011 Chin. Phys. B 20 036103
[9] Yang T S, Zhang Y and Li C 2014 J. Alloys Compd. 584 546
[10] Wu Y Q, Hu M and Wei X Y 2014 Chin. Phys. B 23 040704
[11] Meng D, Yamazaki T, Shen Y B, Liu Z F and Kikuta T 2009 Appl. Surf. Sci. 256 1050
[12] Lee J H 2009 Sens. Actuators B 140 319
[13] Kim H R, Choi K I, Lee J H and Akbar S A 2009 Sens. Actuators B 136 138
[14] Bing Y, Zeng Y, Liu C, Qiao L, Sui Y, Zou B, Zheng W and Zou G 2014 Sens. Actuators B 190 370
[15] Bai S, Zhang K, Luo R, Li D, Chen A and Liu C C 2013 Mater. Lett. 111 32
[16] Qin Y X, Hu M and Zhang J 2010 Sens. Actuators B 150 339
[17] Yu Y 2009 "Preparation and Characterization of Mesoporous Tungsten Oxide" (MS Thesis) (Changsha: Central South University) (in Chinese)
[18] Jiao Z H, Sun X W, Wang J M, Ke L and Demir H V 2010 J. Phys. D: Appl. Phys. 43 285501
[19] Szilágyi I M, Madarász J, Pokol G, Király P, Tárkányi G, Saukko S, Mizsei J, Tóth A L, Szabó A and Josepovits V 2008 Chem. Mater. 20 4116
[20] Shen X P, Wang G X and Wexlera D 2009 Sens. Actuators B 143 325
[21] Hua Z, Wang Y, Wang H and Dong L 2010 Sens. Actuators B 150 588
[22] Zhang C, Debliquy M, Boudiba A, Liao H and Coddet C 2010 Sens. Actuators B 144 280
[23] Wang S H, Chou T C and Liu C C 2003 Sens. Actuators B 94 343
[24] Zhang C, Debliquy M, Boudiba A, Liao H and Coddet C 2010 Sens. Actuators B 144 280
[25] Siciliano T, Tepore A, Micocci G, Genga A, Siciliano M and Filippo E 2009 Sens. Actuators B 138 207
[26] Galatsis K, Cukrov L, Wlodarski W, McCormick P, Kalantar-zadeh K, Comini E and Sberveglieri G 2003 Sens. Actuators B 93 562
[27] Kim Y S, Hwang I S, Kim S J, Lee C Y and Lee J H 2008 Sens. Actuators B 135 298
[28] Gurlo A, Barsan N, Oprea A, Sahm M, Sahm T and Weimar U 2004 Appl. Phys. Lett. 85 2280
[29] Kim Y S, Ha S C, Kim K, Yang H, Park J T, Lee C H, Choi J, Paek J and Lee K 2005 Appl. Phys. Lett. 86 213105
[30] Huang M H, Wu Y Y, Feick H, Tran N, Weber E and Yang P D 2001 Adv. Mater. 13 113
[31] Cabot A, Diéguez A, Romano-Rodriguez A, Morante J R and Bârsan N 2001 Sens. Actuators B 79 98
[32] Ponzonia A, Russo V, Bailini A, Casari C S, Ferroni M, Bassi A L, Migliori A, Morandi V, Ortolani L, Sberveglieri G and Bottani C E 2011 Sens. Actuators B 153 340
[33] Hieu N V, Vuong H V, Duy N V and Hoa N D 2012 Sens. Actuators B 171-172 760
[34] Rossinyol E, Prim A, Pellicer E, Arbiol J, Hernández-Ramírez F, Peiró F, Cornet A, Morante J R, Solovyov L A, Tian B, Bo T and Zhao D 2007 Adv. Funct. Mater. 17 1801
[35] Bai S, Li D, Han D, Luo R, Chen A and Chung C 2010 Sens. Actuators B 150 749
[1] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[2] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
[3] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[4] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[5] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[6] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[7] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[8] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[9] Hydrothermal synthesis and characterization of carbon-doped TiO2 nanoparticles
Zafar Ali, Javaid Ismail, Rafaqat Hussain, A. Shah, Arshad Mahmood, Arbab Mohammad Toufiq, and Shams ur Rahman. Chin. Phys. B, 2020, 29(11): 118102.
[10] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[11] Room temperature NO2-sensing properties of hexagonal tungsten oxide nanorods
Yaqiao Wu(武雅乔), Ming Hu(胡明), Yuming Tian(田玉明). Chin. Phys. B, 2017, 26(2): 020701.
[12] Controllable synthesis of ultrathin vanadium oxide nanobelts via an EDTA-mediated hydrothermal process
Yu-Xiang Qin(秦玉香), Cheng Liu(刘成), Wei-Wei Xie(谢威威), Meng-Yang Cui(崔梦阳). Chin. Phys. B, 2016, 25(2): 027307.
[13] Hydrothermal synthesis of Yb3+, Tm3+ co-doped Gd6MoO12 and its upconversion properties
Di Qiu-Mei (邸秋梅), Sun Yu-Mei (孙宇梅), Xu Qi-Guang (徐齐光), Han Liu (韩柳), Xue Bing (薛兵), Sun Jia-Yue (孙家跃). Chin. Phys. B, 2015, 24(6): 067801.
[14] Synthesis mechanism of nanoporous Sn3O4 nanosheets by hydrothermal process without any additives
Zhao Jun-Hua (赵俊华), Tan Rui-Qin (谭瑞琴), Yang Ye (杨晔), Xu Wei (许炜), Li Jia (李佳), Shen Wen-Feng (沈文峰), Wu Guo-Qiang (吾国强), Zhu You-Liang (朱友良), Yang Xu-Feng (杨旭峰), Song Wei-Jie (宋伟杰). Chin. Phys. B, 2015, 24(6): 066202.
[15] Asymmetric resistive switching processes in W:AlOx/WOy bilayer devices
Wu Hua-Qiang (吴华强), Wu Ming-Hao (吴明昊), Li Xin-Yi (李辛毅), Bai Yue (白越), Deng Ning (邓宁), Yu Zhi-Ping (余志平), Qian He (钱鹤). Chin. Phys. B, 2015, 24(5): 058501.
No Suggested Reading articles found!