Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 018102    DOI: 10.1088/1674-1056/ab593f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire

Yun-Zheng Li(李昀铮)1, Qiu-Ju Feng(冯秋菊)1, Bo Shi(石博)1, Chong Gao(高冲)1, De-Yu Wang(王德煜)1, Hong-Wei Liang(梁红伟)2
1 School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China;
2 School of Microelectronics, Dalian University of Technology, Dalian 116024, China
Abstract  In this paper, ultra-long and large-scaled ZnO microwire arrays are grown by the chemical vapor deposition method, and a single ZnO microwire-based non-balanced electric bridge ethanol gas sensor is fabricated. The experimental results show that the gas sensor has good repeatability, high response rate, short response, and recovery time at room temperature (25 ℃). The response rate of the gas sensor exposed to 90-ppm ethanol is about 93%, with a response time and recovery time are 0.3 s and 0.7 s respectively. As a contrast, the traditional resistive gas sensor of a single ZnO microwire shows very small gas response rate. Therefore, ethanol gas sensor based on non-balanced electric bridge can obviously enhance gas sensing characteristics, which provides a feasible method of developing the high performance ZnO-based gas sensor.
Keywords:  ZnO microwire      gas sensor      room temperature      ethanol  
Received:  13 July 2019      Revised:  25 October 2019      Accepted manuscript online: 
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.05.Dz (II-VI semiconductors)  
  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574026 and 11405017) and the Liaoning Provincial Natural Science Foundation, China (Grant No. 201602453).
Corresponding Authors:  Qiu-Ju Feng     E-mail:  qjfeng@dlut.edu.cn

Cite this article: 

Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟) Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire 2020 Chin. Phys. B 29 018102

[1] Li Z, Zhao Q, Fan W and Zhan J 2011 Nanoscale 3 1646
[2] Kim J S, Yoo H W, Choi H O and Jung H T 2014 Nano Lett. 14 5941
[3] Liu X, Chen N, Xing X, Li Y, Xiao X, Wang Y and Djerdj I 2015 RSC Adv. 5 54372
[4] Sudha M, Radha S, Kirubaveni S, Kiruthika R, Govindaraj R and Santhosh N 2018 Solid State Sci. 78 30
[5] Liu J, Huang H, Zhao H, Yan X, Wu S, Li Y, Wu M, Chen L, Yang X and Su B L 2016 ACS Appl. Mater. Interfaces 8 8583
[6] Cao B Q, Lorenz M, Brandt M, Wenckstern H V, Lenzner J, Biehne G and Grundmann M 2008 Phys. Stat. Sol. (RRL) 2 37
[7] Zhu L and Zeng W 2017 Sens. Actuators A 267 242
[8] Alenezi M R, Alshammari A S, Jayawardena K D G I, Beliatis M J, Henley S J and Silva S R P 2013 J. Phys. Chem. C 117 17850
[9] Hong H S and Chung G S 2014 Sens. Actuators B Chem. 195 446
[10] Zheng Z Q, Yao J D, Wang B and Yang G W 2015 Sci. Rep. 5 11070
[11] Hongsith N, Viriyaworasakul C, Mangkorntong P, Mangkorntong N and Choopun S 2008 Ceram. Int. 34 823
[12] Ju D X, Xu H Y, Qiu Z W, Zhang Z C, Xu Q, Zhang J, Wang J Q and Cao B Q 2015 ACS Appl. Mater. Interfaces 7 19163
[13] Fan S W, Srivastava A K and Dravid V P 2009 Appl. Phys. Lett. 95 142106
[14] Zou A L, Qiu Y, Yu J J, Yin B, Cao G Y, Zhang H Q and Hu L Z 2016 Sens. Actuators B Chem. 227 65
[15] Meng F, Hou N, Jin Z, Sun B, Guo Z, Kong L, Xiao X, Wu H, Li M and Liu J 2015 Sens. Actuators B Chem. 209 975
[16] Li X, Wang C, Guo H, Sun P, Liu F, Liang X and Lu G 2015 ACS Appl. Mater. Interfaces 7 17811
[17] Hsu C L, Gao Y D, Chen Y S and Hsueh T J 2014 Sens. Actuators B Chem. 192 550
[18] Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z and Yang Y Q 2015 J. Mater. Chem. C 3 4678
[19] Lyu S C, Zhang Y, Ruh H, Lee H J, Shim H W, Suh E K and Lee C J 2002 Chem. Phys. Lett. 363 134
[20] Liang H W, Feng Q J, Xia X C, Li R, Guo H Y, Xu K, Tao P C, Chen Y P and Du G T 2014 J. Mater Sci: Mater. Electron. 25 1955
[21] Acharyya D, Huang K Y, Chattopadhyay P P, Ho M S, Fecht H J and Bhattacharyya P 2016 Analyst 141 2977
[22] Ding J, Zhu J, Yao P, Li J, Bi H and Wang X 2015 Ind. Eng. Chem. Res. 54 8947
[23] Alali K T, Liu J, Liu Q, Li R, Li Z, Liu P, Aljebawi K and Wang J 2017 RSC Adv. 7 11428
[24] Wu B, Lin Z, Sheng M, Hou S and Xu J 2016 Appl. Surf. Sci. 360 652
[25] Xu K, Yang L, Yang Y and Yuan C 2017 Phys. Chem. Chem. Phys. 19 29601
[26] Guo J, Zhang J, Zhu M, Ju D, Xu H and Cao B 2014 Sens. Actuators B Chem. 199 339
[27] Hsu C L, Chen K C, Tsai T Y and Hsueh T J 2013 Sens. Actuators B Chem. 182 190
[28] Park S, Sun G J, Jin C, Kim H W, Lee S and Lee C 2016 ACS Appl. Mater. Interfaces 8 2805
[29] Vasudevan A, Jung S, Ji T and Ang S 2014 IEEE Sens. J. 14 3310
[30] Castro H F, Correia V, Pereira N, Costab P, Oliveiraa J and Méndez S L 2018 Additive Manuf. 20 119
[1] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[2] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[3] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
[4] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[5] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[6] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[7] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[8] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[9] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[10] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[11] A rational design of bimetallic PdAu nanoflowers as efficient catalysts for methanol oxidation reaction
Jinyang Liu(刘锦阳), Min Wu(武敏), Xinyi Yang(杨新一), Juan Ding(丁娟), Weiwei Lei(类伟巍), and Yongming Sui(隋永明). Chin. Phys. B, 2021, 30(5): 056102.
[12] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[13] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[14] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[15] Photoelectrocatalytic oxidation of methane into methanol and formic acid over ZnO/graphene/polyaniline catalyst
Jia Liu(刘佳), Ying-Hua Zhang(张英华), Zhi-Ming Bai(白智明), Zhi-An Huang(黄志安), Yu-Kun Gao(高玉坤). Chin. Phys. B, 2019, 28(4): 048101.
No Suggested Reading articles found!