Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 090702    DOI: 10.1088/1674-1056/aba60b
REVIEW Prev   Next  

Acetone sensors for non-invasive diagnosis of diabetes based on metal-oxide-semiconductor materials

Yujie Li(李育洁)1,2, Min Zhang(张敏)3, Haiming Zhang(张海明)1
1 School of Material Science and Engineering, Tiangong University, Tianjin 300387, China;
2 Physical Department, Tianjin University Renai College, Tianjin 301636, China;
3 Department of Obstetrics Tianjin Hospital of ITCWM, Nankai Hospital, Tianjin 300100, China
Abstract  In recent years, clinical studies have found that acetone concentration in exhaled breath can be taken as a characteristic marker of diabetes. Metal-oxide-semiconductor (MOS) materials are widely used in acetone gas sensors due to their low cost, high sensitivity, fast response/recovery time, and easy integration. This paper reviews recent progress in acetone sensors based on MOS materials for diabetes diagnosis. The methods of improving the performance of acetone sensor have been explored for comparison, especially in high humidity conditions. We summarize the current excellent methods of preparations of sensors based on MOSs and hope to provide some help for the progress of acetone sensors in the diagnosis of diabetes.
Keywords:  non-invasive diabetes diagnosis      acetone sensor      selective      high humidity  
Received:  02 June 2020      Revised:  05 July 2020      Accepted manuscript online:  15 July 2020
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  68.35.bg (Semiconductors)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
Corresponding Authors:  Haiming Zhang     E-mail:  zhmtjwl@163.com

Cite this article: 

Yujie Li(李育洁), Min Zhang(张敏), Haiming Zhang(张海明) Acetone sensors for non-invasive diagnosis of diabetes based on metal-oxide-semiconductor materials 2020 Chin. Phys. B 29 090702

[1] Shokrekhodaei M and Quinones S 2020 Sensors 20 1251
[2] Usman F, Dennis J O, Ahmed A Y, Meriaudeau F, Ayodele O B and Rabih A A S 2019 IEEE Acess 7 5963
[3] Saasa V, Beukes M, Lemmer Y and Mwakikunga B 2019 Diagnostics 9 224
[4] Konvalina G and Haick H 2014 Acc. Chem. Res. 47 66
[5] Afreen S and Zhu J J 2019 Trends Anal. Chem. 118 477
[6] Rydosz A 2018 Sensors 18 2298
[7] Moon H G, Jung Y, Jun D, Park J H, Chang Y W, Park H H, Kang C Y, Kim C and Kaner R B 2018 ACS Sens. 3 661
[8] Liu W, Zhou X Y, Xu L, Zhu S D, Yang S, Chen X F, Dong B, Bai X, Lu G Y and Song H W 2019 Nanoscale 11 11496
[9] Zhang J N, Zhang L Z, Leng D Y, Ma F, Zhang Z Y, Zhang Y Y, Wang W, Liang Q F, Gao J Z and Lu H B 2020 Sens. & Actuators B: Chem. 306 127575
[10] Postica V, Vahl A, Santos C D, Dankwort T, Kienle L, Hoppe M, Cadi E A, de Leeuw N H, Terasa M I, Adelung R, Faupel F and Lupan O 2019 ACS Appl. Mater. Interfaces 11 31452
[11] Li F, Ruan S P, Zhang N, Yin Y Y, Guo S J, Chen Y, Zhang H F and Li C N 2018 Sens. Actuators B 265 355
[12] Zhang R, Gao S, Zhou T T, Tu J C and Zhang T 2020 Appl. Surf. Sci. 503 144167
[13] Liu W, Xie Y L, Chen T X, Lu Q X, Rehman S U and Zhu L 2019 Sens. & Actuators B: Chem. 298 126871
[14] Mohammad K, Sahar K, Mojtaba A and Alimorad R 2019 Sens. Actuators B: Chem. 281 96
[15] Li Y J, Zhang H M, Zhang X H, Wei L J, Zhang Y, Hai G Y and Sun Y X 2019 J. Mater. Sci.: Mater. Electron. 30 15734
[16] Nasiri N and Clarke C 2019 Sensors 19 462
[17] Kim S J, Choi S J, Jang J S, Cho H J and Kima I D 2017 Acc. Chem. Res. 50 1587
[18] Kim K H, Kim S J, Cho H J, Kim N H, Jang J S, Choi S J and Kim I D 2017 Sens. Actuators B 241 1276
[19] Yuan H Y, Aljneibi S A A A, Yuan J R, Wang Y X, Liu H, Fang J, Tang C H, Yan X H, Cai H, Gu Y D, Pennycook S J, Tao J F and Zhao D 2019 Adv. Mater. 31 1807161
[20] Wang J C, Shi W N, Sun X Q, Wu F Y, Li Y and Hou Y X 2020 Nanomaterials 10 398
[21] Cui W, Kang X L, Zhang X Y, Zheng Z and Cui X D 2019 Physica E: Low-dimensional Syst. Nanostruct. 113 165
[22] Lu Y Y, Zhan W W, He Y, Wang Y T, Kong X J, Kuang Q, Xie Z X and Zheng L S 2014 ACS Appl. Mater. Interfaces 6 4186
[23] Xu X L, Chen Y, Ma S Y, Li W Q and Mao Y Z 2015 Sens. Actuators B 213 222
[24] Deepapriya S, Devi S L, Vinosha P A, Rodney J D, Raj C J, Jose J E and Das S J 2019 Appl. Phys. A 125 683
[25] Qin Y X, Liu C Y and Liu Y 2015 Chin. Phys. B 24 027304
[26] Li Y Z, Feng Q J, Shi B, Gao C, Wang D Y and Liang H W 2020 Chin. Phys. B 29 018102
[27] Liu T, Li L Y, Yang X Y, Liang X S, Liu F M, Liu F M, Zhang C, Sun P, Yan X and Lu G Y 2019 Sens. & Actuators B: Chem. 296 126688
[28] Song L F, Yang L P, Wang Z, Liu D, Luo L Q, Zhu X X, Xi Y, Yang Z X, Han N, Wang F Y and Chen Y F 2019 Sens. & Actuators B: Chem. 283 793
[29] Zhu S D, Xu L, Yang S, Yang S, Zhou X Y, Chen X F, Dong B, Bai X, Lu Z Y and Song H W 2020 J. Colloid Interface Science 569 358
[30] Wang T S, Zhang S F, Yu Q, Wang S P, Sun P, Lu H Y, Liu F M, Yan X and Lu G Y 2018 ACS Appl. Mater. Interfaces 10 32913
[31] Yoo R, Park Y J, Jung H, Rim H J, Cho S, Lee H S and Lee W 2019 J. Alloys Compd. 803 135
[32] Wang X, Xia R, Jiang S B, Gao M Z and Bao H F 2020 Appl. Surf. Sci. 507 145094
[33] Zhang W S, Fan Y, Yuan T W, Lu B, Liu Y M, Li Z X, Li G J, Cheng Z X and Xu J Q 2020 Adv. Mater. Interfaces 12 3755
[34] Tomi M, Šetka M, Chmela O, Gracia I, Figueras E, Cane C and Vallejos S 2018 Biosensors 8 116
[35] Ge W Y, Jiao S Y, Chang Z, He X M and Li Y X 2020 ACS Appl. Mater. Interfaces 12 13200
[36] Srinivasan P, Kulandaisamy A J, Mani G K, Babu K J, Tsuchiya K and Rayappan J B B 2019 RSC Adv. 9 30226
[37] Ding H, Ma J L, Yue F, Gao P Y and Jia X 2019 J. Solid State Chem. 276 30
[38] Zhang D, Fan Y, Li G J, Du W, Li R L, Liu Y M, Cheng Z X and Xu J Q 2020 Sens. & Actuators B: Chem. 302 127187
[39] Cao J, Wang S M, Zhang H M and Zhang T 2019 Mater. Sci. Semicond. Process. 101 10
[40] Zou Y D, Zhou X R, Zhu Y H, Cheng X W, Zhao D Y and Deng Y H 2019 Acc. Chem. Res. 52 714
[41] Zhang R, Shi J W, Zhou T T, Tu J C and Zhang T 2019 J. Colloid Interface Sci. 539 490
[42] Xu H Y, Gao J, Li M H, Zhao Y Y, Zhang M, Zhao T, Wang L J, Jiang W, Zhu G J, Qian X Y, Fan Y C, Yang J P and Luo W 2019 Front. Chem. 7 266
[43] Li Y J, Wang S M, Hao P, Tian J, Cui H Z and Wang X Z 2018 Sens. & Actuators B: Chem. 273 751
[44] Wang M D, Li Y Y, Yao B H, Zhai K H, Li Z J and Yao H C 2019 Sens. & Actuators B: Chem. 288 656
[45] Li Y H, Zhou X R, Luo W, Cheng X W, Zhu Y H, El-Toni A M, Khan A, Deng Y H and Zhao D Y 2019 Adv. Mater. Interfaces 6 1801269
[46] Hu J, Yang J, Wang W D, Xue Y, Sun Y J, Li P W, Lian K, Zhang W D, Chen L, Shi J and Chen Y 2018 Mater. Res. Bull. 102 294
[47] Lian X X, Li Y, Zhu J W, Zou Y L, Liu X L, An D M and Wang Q 2019 Curr. Appl. Phys. 19 849
[48] Wang T S, Can I, Zhang S F, He J M, Sun P, Liu F M and Lu G Y 2018 ACS Appl. Mater. Interfaces 10 5835
[49] Li Y, Hua Z Q, Wu Y, Zeng Y, Qiu Z L, Tian X M, Wang M J and Li E P 2018 Sens. & Actuators B: Chem. 265 249
[50] Cho H J, Choi S J, Kim N H and Kim I D 2020 Sens. & Actuators B: Chem. 304 127350
[51] Liu W, Sun J, Xu L, Zhu S D, Zhou X Y, Yang S, Dong B, Bai X, Lu G Y and Song H W 2019 Nanoscale Horiz. 4 1361
[52] Huang J Y, Zhou J X, Liu Z H, Li X J, Geng Y F, Tian X Q, Du Y and Qian Z F 2020 Sens. & Actuators B: Chem. 310 127129
[53] Choi Y M, Cho S Y, Jang D Y, Koh H J, Choi J, Kim C H and Jung H T 2019 Adv. Funct. Mater. 29 1808319
[54] Li G J, Cheng Z X, Xiang Q, Yan L M, Wang X H and Xu J Q 2019 Sens. & Actuators B: Chem. 283 590
[55] Yang H M, Ma S Y, Yang G J, Chen Q, Zeng Q Z, Ge Q, Ma L and Tie Y 2017 Appl. Surf. Sci. 425 585
[56] Ying M H, Hou J M, Xie W Q, Xu Y J, Shen S F, Pan H B and Du M 2018 Sens. & Actuators B: Chem. 260 125
[57] Tammanoon N, Wisitsoraat A, Phokharatkul D, Tuantranont A, Phanichphant S, Yordsri V and Liewhiran C 2018 Sens. & Actuators B: Chem. 262 245
[58] Yoon J W, Kim J S, Kim T Y, Hong Y J, Kang Y C and Lee J H 2016 Small 12 4229
[59] Kwak C H, Kim T H, Jeong S Y, Yoon J W, Kim J S and Lee J H 2018 ACS Appl. Mater. Interfaces 10 18886
[60] Kim J S, Na C W, Kwak C H, Li H Y, Yoon J W, Kim J H, Jeong S Y and Lee J H 2019 ACS Appl. Mater. Interfaces 11 25322
[61] Xu Y S, Zheng L L, Yang C, Liu X H and Zhang J 2020 Sens. & Actuators B: Chem. 304 127237
[62] Cao E, Song G Q, Guo Z Q, Zhang Y J, Hao W T, Sun L and Nie Z Q 2020 Mater. Lett. 261 126985
[63] Shao H Y, Huang M X, Fu H, Wang S P, Wang L W, Lu J, Wang Y H and Yu K F 2019 Front. Chem. 7 785
[64] Rahman M, Alam M M, Asiri A M and Islam M A 2017 Talanta 170 215
[65] Poovaragan S, Sundaram R, MagdalaneC M, Kaviyarasu K and Maaza M 2019 J. Nanosci. Nanotechnol. 19 859
[66] Shao S F, Chen X, Chen Y Y, Lai M and Che L S 2019 Appl. Surf. Sci. 473 902
[67] Zhang J N, Lu H, Lu H B, Li G, Gao J Z, Yang Z B, Tian Y H, Zhang M, Wang C L and He Z 2019 J. Alloys Compd. 779 531
[68] Liu L, Zhang D M, Zhang Q, Chen X, Xu G, Lu Y L and Liu Q J 2017 Biosensors and Bioelectronics 93 94
[69] Liu C, Zhao L P, Wang B Q, Sun P, Wang Q J, Gao Y, Liang X S, Zhang T and Lu G Y 2017 J. Colloid Interface Sci. 495 207
[70] Chu X F, Liu J S, Liang S M, Bai L S, Dong Y P and Epifani M 2019 J. Sens. 2019 6074046
[71] Zhang D Z, Wu Z L and Zong X Q 2019 Sens. & Actuators B: Chem. 288 232
[72] Wu K D, Luo Y F, Li Y and Zhang C 2019 Beilstein J. Nanotechnol 10 2516
[73] Xiong Y, Chang X, Qiao X R, Li K, Zhu L, Xia F J, Li X F, Zheng Q B, Xing W and Xue Q Z 2019 Sens. & Actuators B: Chem. 300 127011
[74] Jia X H, Cheng C D, Yu S W, Yang J, Li Y and Song H J 2019 Sens. & Actuators B: Chem. 300 127012
[1] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[2] Dual-function beam splitter of high contrast gratings
Wen-Jing Fang(房文敬), Xin-Ye Fan(范鑫烨), Hui-Juan Niu(牛慧娟), Xia Zhang (张霞), Heng-Ying Xu(许恒迎), and Cheng-Lin Bai(白成林). Chin. Phys. B, 2021, 30(4): 044205.
[3] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[4] Visible-light all-fiber vortex lasers based on mode selective couplers
Chuchu Dong(董楚楚), Jinhai Zou(邹金海), Hongjian Wang(王鸿健), Han Yao(尧涵), Xianglong Zeng(曾祥龙), Yikun Bu(卜轶坤), Zhengqian Luo(罗正钱). Chin. Phys. B, 2020, 29(9): 094204.
[5] High crystalline quality of SiGe fin fabrication with Si-rich composition area using replacement fin processing
Ying Zan(昝颖), Yong-Liang Li(李永亮), Xiao-Hong Cheng(程晓红), Zhi-Qian Zhao(赵治乾), Hao-Yan Liu(刘昊炎), Zhen-Hua Hu(吴振华), An-Yan Du(都安彦), Wen-Wu Wang(王文武). Chin. Phys. B, 2020, 29(8): 087303.
[6] Overview of finite elements simulation of temperature profile to estimate properties of materials 3D-printed by laser powder-bed fusion
Habimana Jean Willy, Xinwei Li(李辛未), Yong Hao Tan, Zhe Chen(陈哲), Mehmet Cagirici, Ramadan Borayek, Tun Seng Herng, Chun Yee Aaron Ong, Chaojiang Li(李朝将), Jun Ding(丁军). Chin. Phys. B, 2020, 29(4): 048101.
[7] Analysis of CV mode selected resonator based on vectorial eigenvector method
You-You Hu(胡友友), Jian-Tai Dou(窦健泰), Bo-Wei Luo(罗博伟), Chang-Yu He(贺昌玉). Chin. Phys. B, 2019, 28(2): 024210.
[8] Lamb wave signal selective enhancement by an improved design of meander-coil electromagnetic acoustic transducer
Wen-Xiu Sun(孙文秀), Guo-Qiang Liu(刘国强), Hui Xia(夏慧), Zheng-Wu Xia(夏正武). Chin. Phys. B, 2018, 27(8): 084301.
[9] Generation of narrowband Lamb waves based on the Michelson interference technique
Tian-Ming Ye(叶天明), Yan-Feng Xu(徐琰锋), Wen-Xiang Hu(胡文祥). Chin. Phys. B, 2018, 27(5): 054301.
[10] A linear-to-circular polarization converter based on I-shapedcircular frequency selective surfaces
Jia-Liang Wu(吴家梁), Bao-Qin Lin(林宝勤), Xin-Yu Da(达新宇), Kai Wu(吴凯). Chin. Phys. B, 2017, 26(9): 094201.
[11] Design of double-layer active frequency-selective surface with PIN diodes for stealth radome
Bin Deng(邓斌), Jian Chen(陈健). Chin. Phys. B, 2017, 26(9): 094101.
[12] Influence of adatom migration on wrinkling morphologies of AlGaN/GaN micro-pyramids grown by selective MOVPE
Jie Chen(陈杰), Pu-Man Huang(黄溥曼), Xiao-Biao Han(韩小标), Zheng-Zhou Pan(潘郑州), Chang-Ming Zhong(钟昌明), Jie-Zhi Liang(梁捷智), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), Bai-Jun Zhang(张佰君). Chin. Phys. B, 2017, 26(6): 068101.
[13] Velocity-selective spectroscopy measurements of Rydberg fine structure states in a hot vapor cell
Jun He(何军), Dongliang Pei(裴栋梁), Jieying Wang(王杰英), Junmin Wang(王军民). Chin. Phys. B, 2017, 26(11): 113202.
[14] Observation of selective surface element substitution in FeTe0.5Se0.5 superconductor thin film exposed to ambient air bysynchrotron radiation spectroscopy
Nian Zhang(张念), Chen Liu(刘晨), Jia-Li Zhao(赵佳丽), Tao Lei(雷涛), Jia-Ou Wang(王嘉鸥), Hai-Jie Qian(钱海杰), Rui Wu(吴蕊), Lei Yan(颜雷), Hai-Zhong Guo(郭海中), Kurash Ibrahim(奎热西). Chin. Phys. B, 2016, 25(9): 097402.
[15] All-dielectric frequency selective surface design based on dielectric resonator
Zheng-Bin Wang(王正斌), Chao Gao(高超), Bo Li(李波), Zhi-Hang Wu(吴知航), Hua-Mei Zhang(张华美), Ye-Rong Zhang (张业荣). Chin. Phys. B, 2016, 25(6): 068101.
No Suggested Reading articles found!