Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 068204    DOI: 10.1088/1674-1056/22/6/068204
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of rapid thermal annealing on room temperature NO2-sensing properties of WO3 thin film under LED radiation

Hu Ming (胡明), Jia Ding-Li (贾丁立), Liu Qing-Lin (刘青林), Li Ming-Da (李明达), Sun Peng (孙鹏)
School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, China
Abstract  WO3 thin films were sputtered onto alumina substrates by DC facing-target magnetron sputtering. One sample was rapid-thermal-annealed (RTA) at 600 ℃ in a gas mixture of N2:O2=4:1, and as a comparison, another was conventionally thermal-annealed at 600 ℃ in air. The morphology of both was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and the crystallization structure and phase identification were characterized by X-ray diffraction (XRD). The NO2-sensing measurements were taken under LED light at room temperature. Sensitivity of the RTA-treated sample is high, up to nearly 100, whereas sensitivity of the conventionally thermal-annealed sample is about 5 under the same conditions. From the much better selectivity and response-recovery characteristics, it can be concluded that, compared to conventional thermal annealing, RTA has a greater effect on the NO2-sensing properties of WO3 thin films.
Keywords:  gas sensor      tungsten oxide thin film      rapid thermal annealing      LED  
Received:  14 November 2012      Revised:  12 January 2013      Accepted manuscript online: 
PACS:  82.47.Rs (Electrochemical sensors)  
  73.61.Cw (Elemental semiconductors)  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  85.60.Jb (Light-emitting devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62171070, 60771019, and 60801018), and Tianjin Key Research Program of Application Foundation and Advanced Technology, China (Grant No. 11JCZDJC15300).
Corresponding Authors:  Hu Ming     E-mail:  huming@tju.edu.cn

Cite this article: 

Hu Ming (胡明), Jia Ding-Li (贾丁立), Liu Qing-Lin (刘青林), Li Ming-Da (李明达), Sun Peng (孙鹏) Effects of rapid thermal annealing on room temperature NO2-sensing properties of WO3 thin film under LED radiation 2013 Chin. Phys. B 22 068204

[1] Rava M, Verlato G and Bono R 2007 Sci. Total Environ. 384 163
[2] Lin C Y, Fang Y Y, Lin C W, Tunney J J and Ho K C 2010 Sens. Actuators B 146 28
[3] Chougule M A, Shashwati S and Patil V B 2012 Sens. Actuators B 38 2685
[4] Kilinc N, Ö ztürk S, Arda L, Altindal A and Ö ztürk Z Z 2012 J. Alloys. Compd. 536 138
[5] Mohammadi M R, Fray D J 2007 Acta Mater. 55 4455
[6] Moona H G, Janga H W, Kima J S, Parkb H H and Yoon S J 2011 Sens. Actuators B 153 37
[7] Yuan H J, Chen Y Q, Yu F, Peng Y H, He X W, Zhao D and Tang D S 2011 Chin. Phys. B 20 036103
[8] Li S, Li F L, Zhou S M, Wang P, Cheng K and Du Z L 2009 Chin. Phys. B 18 3985
[9] Liu L, Zhang T, Li S C, Wang L Y, Fan H T and Li W 2009 Chin. Phys. Lett. 26 100702
[10] Qiao J P, Zhu Z P, Yan X Y and Qin J M 2011 Chin. Phys. Lett. 29 020701
[11] Yue X J, Hong T S, Xu X and Li Z 2011 Chin. Phys. Lett. 28 090701
[12] Xu L, Wang R, Xiao Q, Zhang D and Liu Y 2011 Chin. Phys. Lett. 28 070702
[13] Liu L, Kou L Y, Zhong Z C, Wang L Y, Liu L F and Li W 2010 Chin. Phys. Lett. 27 050701
[14] Sun F Y 2010 "Study and Preparation of Low Power Porous Silicon Based Tungsten Oxide Film Gas Sensors" Ph. D. dissertation, Tianjin University (in Chinese)
[15] Chen H Q, Hu M, Zeng J and Wang W D 2012 Chin. Phys. B 21 058201
[16] Haridas D, Chowdhuri A, Sreenivasa K and Guptaa V 2011 Sens. Actuators B 153 152
[17] Deng L B, Ding X H, Zeng D W, Tian S Q, Li H Y and Xie C S 2012 Sens. Actuators B 163 260
[18] Chen S H, Chen J, Deng S Z and Xu N S 2010 Chin. Phys. B 19 037803
[19] Polleux J, Gurlo A, Barsan N, Weimar U, Antonietti M and Niederberger M 2006 Angew. Chem. Int. Ed. 45 261
[20] Liu Z, Yamazaki T, Shen Y, Meng D, Kikuta T, Nakatani N and Kawabata T 2008 J. Phys. Chem. C 112 1391
[21] Pokhrel S, Simion C E, Teodorescu V S, Barsan N and Weimar U 2009 Adv. Funct. Mater. 19 1767
[22] Labidi A, Gillet E, Delamare R, Maaref M and Aguir K 2006 Sens. Actuators B 120 338
[23] Solis J L, Saukko S, Kish L, Granqvist C G and Lantto V 2001 Thin Solid Films 391 255
[24] Penza M, Martucci C and Cassano G 1998 Sens. Actuators B 50 52
[25] Qin Y X, Shen W J, Li X and Hu M 2011 Sens. Actuators B 155 646
[26] Qin Y X, Hu M and Zhang J 2010 Sens. Actuators B 150 339
[27] Hu M, Wang W D, Zeng P, Zeng J and Qin Y X 2012 Chin. Phys. B 21 023101
[28] Wang X, Yee S S and Carey W P 1995 Sens. Actuators B 25 454
[29] Wang Y D, Chen Z X, Li Y F, Zhou Z L and Wu X H 2001 Solid State Electron. 45 639
[30] Guerin J, Aguir K and Bendahan M 2006 Sens. Actuators B 119 327
[31] Zeng J, Hu M, Wang W D, Chen H Q and Qin Y X 2012 Sens. Actuators B 161 447
[32] Korotcenkov G 2008 Mater. Sci. Eng. R 61 1
[33] Hu M, Wang W D, Zeng J and Qin Y X 2011 Chin. Phys. B 20 102101
[34] Ma H L, Fan D W and Niu X S 2010 Chin. Phys. B 19 076102
[35] Qin Y X, Wang F, Shen W J and Hu M 2010 Acta Phys. Sin. 61 057301 (in Chinese)
[36] Qin Y X, Li X, Wang F and Hu M 2011 J. Alloys Compd. 509 8401
[37] Hu M, Zhang J, Wang W D and Qin Y X 2011 Chin. Phys. B 20 082101
[38] Sun F Y, Hu M, Sun P, Zhang J and Liu B 2010 J. Nanosci. Nanotechnol. 10 7739
[39] Wang C, Wang F F, Fu X Q, Zhang E D and Xu Z 2011 Chin. Phys. B 20 050701
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[7] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[8] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[9] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[10] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[11] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[12] Three-dimensional coupled-mode model and characteristics of low-frequency sound propagation in ocean waveguide with seamount topography
Ya-Xiao Mo(莫亚枭), Chao-Jin Zhang(张朝金), Li-Cheng Lu(鹿力成), and Sheng-Ming Guo(郭圣明). Chin. Phys. B, 2022, 31(8): 084301.
[13] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[14] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[15] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
No Suggested Reading articles found!